Developing new diagnostic models based on the underlying biological mechanisms rather than subjective symptoms for psychiatric disorders is an emerging consensus. Recently, machine learning (ML)-based classifiers using functional connectivity (FC) for psychiatric disorders and healthy controls (HCs) are developed to identify brain markers. However, existing ML-based diagnostic models are prone to overfitting (due to insufficient training samples) and perform poorly in new test environments. Furthermore, it is difficult to obtain explainable and reliable brain biomarkers elucidating the underlying diagnostic decisions. These issues hinder their possible clinical applications. In this work, we propose BrainIB, a new graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI), by leveraging the famed information bottleneck (IB) principle. BrainIB is able to identify the most informative edges in the brain (i.e., subgraph) and generalizes well to unseen data. We evaluate the performance of BrainIB against three baselines and seven state-of-the-art (SOTA) brain network classification methods on three psychiatric datasets and observe that our BrainIB always achieves the highest diagnosis accuracy. It also discovers the subgraph biomarkers that are consistent with clinical and neuroimaging findings. The source code and implementation details of BrainIB are freely available at the GitHub repository (https://github.com/SJYuCNEL/brain-and-Information-Bottleneck).

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3449419DOI Listing

Publication Analysis

Top Keywords

diagnostic models
8
psychiatric disorders
8
brainib
6
brain
5
brainib interpretable
4
interpretable brain
4
brain network-based
4
psychiatric
4
network-based psychiatric
4
psychiatric diagnosis
4

Similar Publications

Early developmental trajectories of the impaired hand in infants with unilateral cerebral palsy.

Dev Med Child Neurol

January 2025

Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.

Aim: To identify developmental trajectories of impaired hand function in infants aged 3 to 15 months with unilateral cerebral palsy (CP).

Method: Sixty-three infants (37 male; median gestational age 37 weeks [interquartile range 30-39.1 weeks]) recruited as part of a randomized trial with a confirmed diagnosis of unilateral CP were included.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Purpose: Carcinoembryonic antigen (CEA) is an important prognostic factor for rectal cancer. This study aims to introduce a novel cutoff point for CEA within the normal range to improve prognosis prediction and enhance patient stratification in rectal cancer patients.

Methods: A total of 316 patients with stages I to III rectal cancer who underwent surgical tumor resection were enrolled.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Associations of fat, bone, and muscle indices with disease severity in patients with obstructive sleep apnea hypopnea syndrome.

Sleep Breath

January 2025

Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.

Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.

Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!