Intercalation of several elements (Ag, Bi, In, Mo, Os, Pd, Pt, Rh, Ru, Sb, and W) is used to chemically alter a wide range of properties of two-dimensional layered α-MoO. Intercalation modifies acoustic phonons and elastic constants, as measured with Brillouin scattering. Intercalation alters electronic bandgaps, color, structure, Raman shifts, and electron binding energies. Optical chemochromism is demonstrated with intercalants changing the color of MoO from transparent to brilliant blue (In, Mo, Os, and Ru) and orange (Ag). Correlations are investigated among material properties. There is evidence that in-plane longitudinal stiffness correlates with changes in the bandgap, while various Raman modes appear to be connected to a variety of properties, including shear modulus , Mo binding energies, lattice constants, and the preferred crystal structure of the intercalant. The results indicate a surprising degree of complexity, suggesting competition among multiple distinct mechanisms and interactions involving specific intercalant species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c03198 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemical Engineering, University College London (UCL), London, WC1E 7JE, UK.
Hydrogen energy will play a dominant role in energy transition from fossil fuel to low carbon processes, while economical, efficient, and safe hydrogen storage and transportation technology has become one of the main bottlenecks that currently hinder the application of the hydrogen energy scale. Methanol has widely been regarded as a primary liquid H storage medium due to its high hydrogen content, easy storage and transportation and relatively low toxicity. Hydrogen release from methanol using photocatalysis has thus been the focus of intense research and recent years have witnessed its fast progress and drawbacks.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.
The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.
View Article and Find Full Text PDFInt J Heat Mass Transf
March 2024
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.
In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!