Metformin Attenuates Partial Epithelial-Mesenchymal Transition in Salivary Gland Inflammation via PI3K/Akt/GSK3β/Snail Signaling Axis.

Inflammation

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.

Published: September 2024

Chronic inflammation in the salivary glands (SG) often triggers epithelial-mesenchymal transition (EMT), leading to the loss of acinar function and promoting fibrosis. This study explores the role of Metformin in mitigating partial EMT in SG inflammation. In vitro, human salivary gland epithelial cells (hSGECs) were treated with lipopolysaccharide (LPS) and Metformin. EMT markers and the PI3K/Akt/GSK3β/Snail signaling axis were assessed using RNA-seq and Western blot analysis. In vivo, a Wharton's duct ligation rat model was employed to mimic chronic sialadenitis (CS). Nine Wistar rats were randomly divided into three groups: Control, Ligation and Ligation + Metformin groups, with three rats per group. After ductal ligation, the Ligation + Metformin group received 100 mg/kg of Metformin via intragastric administration, while the Control and Ligation groups received an equivalent saline every 24 h. Histological analysis, immunohistochemical and immunofluorescence staining were conducted to evaluate acinar morphology, EMT, and the PI3K/Akt/GSK3β/Snail signaling axis. The results showed that in CS tissues, atrophied acinar cells underwent partial EMT. In vitro, Metformin reversed LPS-induced EMT in hSGECs. RNA-seq and Western blot revealed that Metformin achieved this effect by targeting the PI3K/Akt/GSK3β/Snail signaling axis (P < 0.01). In ductal ligation models, Metformin treatment restored ligation-induced acinar damage and functional loss (P < 0.01). Further histological evidence supported that Metformin mitigated EMT by inhibiting inflammatory activation of PI3K/Akt/GSK3β/Snail signaling axis (P < 0.01). In conclusion, Metformin alleviates partial EMT in SG inflammation by targeting the PI3K/Akt/GSK3β/Snail signaling axis, highlighting its potential as a therapeutic strategy for SG inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-024-02142-yDOI Listing

Publication Analysis

Top Keywords

pi3k/akt/gsk3β/snail signaling
16
signaling axis
16
epithelial-mesenchymal transition
8
salivary gland
8
partial emt
8
rna-seq western
8
western blot
8
control ligation
8
ligation ligation + metformin
8
metformin
6

Similar Publications

This study first investigated how FNDC5 affected the development of oral cancer and revealed the role of FNDC5 in the migration and invasion of oral cancer. The present work evaluated differential FNDC5 expression within oral cancer samples versus matched non-carcinoma samples based on GEO database analysis and immunohistochemistry. We then generated oral cancer cell lines with FNDC5 overexpression and knockdown to determine the role of altered FNDC5 expression in the migration and invasion of oral cancer.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a significant disease worldwide, with high mortality rates. Conventional treatment methods often lead to metastasis and drug resistance, highlighting the need to explore new drugs and their potential molecular mechanisms. In this study, we investigated the effects of arctigenin on CRC cell proliferation, migration, invasion, apoptosis, and related protein expression, as well as its potential molecular mechanisms.

View Article and Find Full Text PDF

Metformin Attenuates Partial Epithelial-Mesenchymal Transition in Salivary Gland Inflammation via PI3K/Akt/GSK3β/Snail Signaling Axis.

Inflammation

September 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.

Chronic inflammation in the salivary glands (SG) often triggers epithelial-mesenchymal transition (EMT), leading to the loss of acinar function and promoting fibrosis. This study explores the role of Metformin in mitigating partial EMT in SG inflammation. In vitro, human salivary gland epithelial cells (hSGECs) were treated with lipopolysaccharide (LPS) and Metformin.

View Article and Find Full Text PDF

ALOX5 induces EMT and promotes cell metastasis via the LTB4/BLT2/PI3K/AKT pathway in ovarian cancer.

Cell Signal

December 2024

Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 41000, China. Electronic address:

Ovarian cancer represents the most lethal gynecological malignancy with high invasiveness. Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis. However, the role of ALOX5 in EMT and cancer metastasis in ovarian cancer (OC) remain unclear.

View Article and Find Full Text PDF

Background: Lung cancer is a highly prevalent malignancy with significant morbidity and mortality rates. MiR-489-3p, a microRNA, has been identified as a regulator of tumor cell proliferation and invasion. Its expression is downregulated in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!