Glioblastoma remains a fatal diagnosis despite continuous efforts to improve upon the current standard backbone management paradigm of surgery, radiation therapy, systemic therapy and Tumor Treating Fields. Radiation therapy (RT) plays a pivotal role, with progress recently achieved in multiple key areas of research. The evolving landscape of dose and fractionation schedules and dose escalation options for different patient populations is explored, offering opportunities to better tailor treatment to a patient's overall status and preferences; novel efforts to modify treatment volumes are presented, such as utilizing state-of-the-art MRI-based linear accelerators to deliver adaptive therapy, hoping to reduce normal tissue exposure and treatment-related toxicity; specialized MR techniques and functional imaging using novel PET agents are described, providing improved treatment accuracy and the opportunity to target areas at risk of disease relapse; finally, the role of particle therapy and new altered dose-rate photon and proton therapy techniques in the treatment paradigm of glioblastoma is detailed, aiming to improve tumor control and patient outcome by exploiting novel radiobiological pathways. Improvements in each of these aforementioned areas are needed to make the critical necessary progress and allow for new approaches combining different advanced treatment modalities. This plethora of multiple new treatment options currently under investigation provides hope for a new outlook for patients with glioblastoma in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-024-04824-x | DOI Listing |
Front Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Otolaryngology, Changhai Hospital, Naval Medical University, Shanghai, China.
Background: There is no consensus regarding the optimal regimen for metastatic nasopharyngeal carcinoma (dmNPC). Locoregional intensity modulated radiotherapy (LRRT) following palliative chemotherapy (PCT) has been shown to prolong the overall survival (OS) and improve the progression-free survival (PFS) of patients with dmNPC, compared with PCT alone. However, patients with a high tumor burden do not benefit from additional LRRT, which inevitably results in toxicity.
View Article and Find Full Text PDFBackground: Hypothyroidism is a common sequela after radiotherapy for nasopharyngeal carcinoma (NPC). Magnetic resonance imaging (MRI) has gained prominence in thyroid imaging, leveraging its non-ionizing radiation, high spatial resolution, multiparameter and multidirectional imaging. Few previous studies have investigated the evaluation of radiation-induced thyroid injury by MRI.
View Article and Find Full Text PDFNMC Case Rep J
December 2024
Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.
Older patients represent a unique and vulnerable subgroup, requiring careful consideration when determining treatment options. Treatment-related leukoencephalopathy is commonly observed in older patients months to years after receiving radiotherapy and/or methotrexate for primary central nervous system lymphoma (PCNSL). Tirabrutinib is an orally available, highly selective, and potent second-generation Bruton's tyrosine kinase inhibitor (BTKi) approved for treating recurrent/refractory PCNSL in Japan.
View Article and Find Full Text PDFIndian Dermatol Online J
December 2024
Department of Dermatology, Father Muller Medical College, Mangalore, Karnataka, India.
Microcystic adnexal carcinoma (MAC) is a rare, slow-growing, locally aggressive malignant, and recurring appendageal tumor. Prolonged UV exposure, immunosuppression, and radiotherapy are a few frequently associated risk factors. MAC classically presents as an asymptomatic skin coloured plaque on the face.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!