In China, urban sprawl and developed land expansion challenge the country's "carbon peak" and "carbon neutrality" goals. Counties as the basic governance units are crucial for effective carbon reduction policies. This study examines land use carbon emissions (LUCE) in Shaanxi Province at the county level, essential for China's low-carbon strategy. Analyzing data from 107 counties between 2000 and 2020, we found that developed land, though increasing, is the primary carbon source with a slowing growth rate. The Conversion of Cropland to Forests and Grasslands national policy mitigated the impact on carbon absorption. Carbon emissions displayed positive autocorrelation and spatial heterogeneity, varying across the region. Using the Spatial Durbin Error Model, we linked county-level emissions to GDP per capita, population, urbanization rate, and research and development expenditure for direct and indirect influence. These factors correlate with fossil fuel use and high-quality industrial development. Promoting public transits and reducing private car use are vital for achieving local and regional low-carbon goals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34835-0 | DOI Listing |
ACS Omega
January 2025
Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia.
Many approaches have been implemented in order to reduce the emissions of particular pollutants without compromising engine performance. Cotton and castor mixed seed oil was chosen for the current study due to their distinct fatty acid composition and potential as a feedstock for bio-additives. Three fuel samples-99 % diesel and 1 % blended fuel (cottonseed oil + castor seed oil), 99.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
The estimation of CO emission factors (EFs) is a key step in calculating automobile CO emissions. However, city-level research on the integrated estimation of vehicle CO EFs under real conditions is insufficient. To enrich the research methods of city-level vehicle CO EFs, this paper constructs a vehicle-road-driver three-layer regression model and estimates vehicle CO EFs empirical parameters for Tianjin.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
This review explores the behavior of low-concentration CO (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO capture, storage, and conversion technologies, as well as guidance for the development and application of new materials.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!