The increasing salinity and alkalinity of soils pose a global challenge, particularly in arid regions such as Tunisia, where about 50% of lands are sensitive to soil salinization. Anthropogenic activities, including the use of treated wastewater (TWW) for irrigation, exacerbate these issues. Haloalkaliphilic bacteria, adapted to TWW conditions and exhibiting plant-growth promotion (PGP) and biocontrol traits, could offer solutions. In this study, 24 haloalkaliphilic bacterial strains were isolated from rhizosphere sample of olive tree irrigated with TWW for more than 20 years. The bacterial identification using 16S rRNA gene sequencing showed that the haloalkaliphilic isolates, capable of thriving in high salinity and alkaline pH, were primarily affiliated to Bacillota (Oceanobacillus and Staphylococcus). Notably, these strains exhibited biofertilization and enzyme production under both normal and saline conditions. Traits such as phosphate solubilization, and the production of exopolysaccharide, siderophore, ammonia, and hydrogen cyanide were observed. The strains also demonstrated enzymatic activities, including protease, amylase, and esterase. Four selected haloalkaliphilic PGPR strains displayed antifungal activity against Alternaria terricola, with three showing tolerances to heavy metals and pesticides. The strain Oceanobacillus picturea M4W.A2 was selected for genome sequencing. Phylogenomic analyses indicated that the extreme environmental conditions probably influenced the development of specific adaptations in M4W.A2 strain, differentiating it from other Oceanobacillus picturae strains. The presence of the key genes associated with plant growth promotion, osmotic and oxidative stress tolerance, antibiotic and heavy metals resistance hinted the functional capabilities might help the strain M4W.A2 to thrive in TWW-irrigated soils. By demonstrating this connection, we aim to improve our understanding of genomic fitness to stressed environments. Moreover, the identification of gene duplication and horizontal gene transfer events through mobile genetic elements allow the comprehension of these adaptation dynamics. This study reveals that haloalkaliphilc bacteria from TWW-irrigated rhizosphere exhibit plant-growth promotion and biocontrol traits, with genomic adaptations enabling their survival in high salinity and alkaline conditions, offering potential solutions for soil salinization issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10482-024-02012-5 | DOI Listing |
Front Microbiol
December 2024
Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
Soda lakes are unique double-extreme habitats characterized by high salinity and soluble carbonate alkalinity, yet harboring rich prokaryotic life. Despite intensive microbiology studies, little is known about the identity of the soda lake hydrolytic bacteria responsible for the primary degradation of the biomass organic matter, in particular cellulose. In this study, aerobic and anaerobic enrichment cultures with three forms of native insoluble cellulose inoculated with sediments from five soda lakes in south-western Siberia resulted in the isolation of four cellulotrophic haloalkaliphilic bacteria and their four saccharolytic satellites.
View Article and Find Full Text PDFPLoS One
December 2024
Research and Internationalisation Office, National University of Science and Technology, Bulawayo, Zimbabwe.
The use of metagenomics has substantially improved our understanding of the taxonomy, phylogeny and ecology of extreme environment microbiomes. Advances in bioinformatics now permit the reconstruction of almost intact microbial genomes, called metagenome-assembled genomes (MAGs), from metagenomic sequence data, allowing for more precise cell-level taxonomic, phylogenetic and functional profiling of uncultured extremophiles. Here, we report on the recovery and characterisation of metagenome-assembled genomes from the Buhera soda pans located in eastern Zimbabwe.
View Article and Find Full Text PDFBMC Microbiol
November 2024
Research and Internationalization Office, National University of Science and Technology, Bulawayo, Zimbabwe.
Background: Soda pans are unique, natural aquatic environments characterised by elevated salinity and alkalinity, creating a distinctive and often extreme geochemistry. The microbiomes of soda pans are unique, with extremophiles such as halophiles, alkaliphiles and haloalkaliphiles being important. Despite being dominated by mostly unculturable inhabitants, soda pans hold immense biotechnological potential.
View Article and Find Full Text PDFExtremophiles
November 2024
University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India.
As the textile wastewater is highly saline and has high pH it is important to employ extremophilic microbes to survive in harsh conditions and provide effective bioremediation of textile dyes. This study aims to find a sustainable solution for dye removal by investigating the potential of an indigenously isolated bacterium, Nesterenkonia lacusekhoensis EMLA3 (halo-alkaliphilic) for treatment of an azo dye, methyl orange (MO) and textile effluent. MO dye decolorization studies were conducted using mineral salt media (MSM) by varying incubation time (0-120 h), initial dye concentration (50-350 mg/L), pH (7.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
September 2024
Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
The increasing salinity and alkalinity of soils pose a global challenge, particularly in arid regions such as Tunisia, where about 50% of lands are sensitive to soil salinization. Anthropogenic activities, including the use of treated wastewater (TWW) for irrigation, exacerbate these issues. Haloalkaliphilic bacteria, adapted to TWW conditions and exhibiting plant-growth promotion (PGP) and biocontrol traits, could offer solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!