A novel multidimensional electromagnetic wave-absorbing material was developed by combining carboxylated carbon nanotubes (CNT) with graphene oxide (GO) through multidimensional design, and cobalt/nickel-based metal organic frameworks (Co/Ni-MOF) were subsequently loaded onto the GO surface via its rich functional groups to form the composite absorbing material CNT-rGO-Co/Ni-MOF. Incorporating 25 wt % of CNT-rGO-Co/Ni-MOF into the paraffin matrix led to a remarkable RL value of -43 dB at 16.4 GHz, with an effective absorbing bandwidth (EAB) exceeding 4 GHz, all within a thickness of just 1.5 mm, showcasing its "lightweight, broadband, and high efficiency" characteristics. The exceptional electromagnetic wave absorption performance was attributed to multi-interface polarization loss, resistance loss, and magnetic medium loss. Furthermore, when incorporating 10 wt % of CNT-rGO-Co/Ni-MOF, the heat release capacity and peak heat release rate of EP/CNT-rGO-Co/Ni-MOF decreased by 59.2 and 52.6%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c10557DOI Listing

Publication Analysis

Top Keywords

electromagnetic wave-absorbing
8
incorporating cnt-rgo-co/ni-mof
8
heat release
8
optimization design
4
design multidimensional
4
multidimensional heterostructure
4
heterostructure lightweight
4
lightweight broadband
4
broadband highly
4
highly efficient
4

Similar Publications

With the development of science and technology, there is a great demand for electromagnetic wave absorbing materials for both military and civilian purposes. Among them, carbonyl iron powder (CIP) has attracted a lot of attention due to its mature production system and good electromagnetic wave loss capability. However, the application of CIP is limited due to poor impedance matching, poor corrosion resistance, and poor oxidation resistance.

View Article and Find Full Text PDF

-CoFeO/TiCT/BNC Hybrid Aerogels with Modulation Impedance Matching for Electromagnetic Wave Absorption and Health Monitoring.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

Given the limitations of single-function electromagnetic wave-absorbing materials (EWAMs) in meeting the evolving demands of complex usage scenarios, there is a growing need for structure-function integrated composites that offer a combination of microwave absorption, human monitoring, and thermal insulation. This study successfully synthesized two-dimensional (2D) TiCT MXene via selective etching of Al from the TiAlC MAX phase. By introducing MXene into a composite of hydroxylated CoFeO nanoparticles (-CFO NPs) and bacterial nanocellulose (BNC) to modulate the electromagnetic performance of the EWAMs.

View Article and Find Full Text PDF

High Absorption of Electromagnetic Waves Based on 3D PMMA@Mxene@CoO Composite Microsphere.

Materials (Basel)

November 2024

Shandong Jinhong New Material Co., Ltd., Weifang 262100, China.

With the increasing demand for effective electromagnetic wave (EMW) absorbers due to the proliferation of electronic devices and 5G communication systems, traditional wave-absorbing materials can no longer meet the current requirements. Thus, this research introduces a three-dimensional (3D) composite material consisting of PMMA@Mxene@Co₃O₄ microspheres, prepared through in situ self-assembly and hydrothermal growth. The strong electrical conductivity of Mxene, combined with the magnetic loss of Co₃O₄, ensures enhanced dielectric-magnetic synergy, leading to excellent EMW absorption.

View Article and Find Full Text PDF

A dual-band broadband absorber using frequency selective surface for satellite antenna.

Sci Rep

November 2024

Shaanxi Sunshine Electronic Technology CO., LTD, Xi'an, 710127, China.

A dual-band broadband absorber based on frequency selective surface (FSS) is proposed. This double-layer absorber consists of two layers of FSS structure; each layer has a unique construction and plays its wave-absorbing function in different frequency bands. In the low-frequency band, layer I is a transmission channel, and layer II effectively absorbs electromagnetic waves.

View Article and Find Full Text PDF

Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding.

Adv Colloid Interface Sci

January 2025

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:

Due to the swift advancement of the electronic industry and information technology, electromagnetic wave absorption materials are gaining significance in the field of intelligent equipment and weaponry. Nanomaterials were developed to investigate wave absorbing materials that can achieve both impedance matching and attenuation balance. Nanomaterials possess the properties of being thin, lightweight, and capable of absorbing microwave radiation across a wide range of frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!