Thio-benzothioxanthene imide (BTXI) exhibits long excited state lifetime ( = 17.7 μs) and high ISC efficiency ( = 97%). For the first time, BTXI derivatives were used as photosensitizers for triplet-triplet annihilation upconversion, achieving the highest efficiency of 13.8%. In addition, thio-BTXI derivatives were used as photoinitiators for photopolymerization, resulting in a series of green light-activated radical polymerization systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc04049jDOI Listing

Publication Analysis

Top Keywords

exploring triplet
4
triplet state
4
state properties
4
properties thio-benzothioxanthene
4
thio-benzothioxanthene imides
4
imides applications
4
applications tta-upconversion
4
tta-upconversion photopolymerization
4
photopolymerization thio-benzothioxanthene
4
thio-benzothioxanthene imide
4

Similar Publications

Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.

View Article and Find Full Text PDF

Influence of CTAB Reverse Micellar Confinement on the Tetrahedral Structure of Liquid Water.

J Phys Chem B

January 2025

Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Bathinda 151401, India.

The effect of confinement on the tetrahedral ordering of liquid water plays a vital role in controlling their microscopic structure and dynamics as well as their spectroscopic properties. In this article, we have performed the classical molecular dynamics simulations of four different CTAB/water/chloroform reverse micelles with varied water content to study how the tetrahedral ordering of nanoscale water inside reverse micellar confinement influences the microscopic dynamics and the structural relaxation of water···water hydrogen bonds and its impact on the low-frequency intermolecular vibrational bands. We have noticed from the results obtained from simulated trajectories the lowering trends of tetrahedral ordering of water pools in reverse micellar confinements as we move from bulk to confined and strictly confined environments.

View Article and Find Full Text PDF

Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.

View Article and Find Full Text PDF

Dynamics of hydrogen shift reactions between peroxy radicals.

Phys Chem Chem Phys

January 2025

The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Peroxy radicals are key intermediates in many atmospheric processes. Reactions between such radicals are of particular interest as they can lead to accretion products capable of participating in new particle formation (NPF). These reactions proceed through a tetroxide intermediate, which then decomposes to a complex of two alkoxy radicals and O, with spin conservation dictating that the complex must be formed in the triplet state.

View Article and Find Full Text PDF

Organic donor-acceptor (D-A) cocrystals are gaining attention for their potential applications in optoelectronic devices. This study explores the dynamics of charge transfer (CT) and triplet exciton formation in various D-A cocrystals. By examining a series of D-A cocrystals composed of coronene (COR), peri-xanthenoxanthene (PXX), and perylene (PER) donors paired with N,N-bis(3'-pentyl)perylene-3,4:9,10-bis(dicarboximide) (PDI), naphthalene-1,4:5,8-tetracarboxy-dianhydride (NDA), or pyrene-4,5,9,10-tetraone (PTO) acceptors, using transient absorption microscopy and time-resolved electron paramagnetic resonance spectroscopy, we find that the strength of the CT interaction influences the nature and yield of triplet excitons produced by CT state recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!