Compared to traditional lithium metal batteries, anode-free lithium metal batteries use bare current collectors as an anode instead of Li metal, making them highly promising for mass production and achieving high-energy density. The current collector, as the sole component of the anode, is crucial in lithium deposition-stripping behavior and greatly impacts the rate of Li depletion from the cathode. In this study, to investigate the lithiophilicity effect of the current collector on the solid electrolyte interface (SEI) film construction and cycling performance of anode-free lithium batteries, various lightweight paper-based current collectors were prepared by electroless plating Cu and lipophilic Ag on low-dust paper (LDP). The areal densities of the as-prepared LDP@Cu, LDP@Cu-Ag, and LDP@Ag were approximately 0.33 mg cm. The use of lipophilic Ag-coated collectors with varying loadings allowed for the regulation of lipophilicity. The impacts of these collectors on the distribution of SEI components and Li depletion rate in common electrolytes were investigated. The findings suggest that higher loadings of lipophilic materials, such as Ag, on the current collector increase its lipophilicity but also lead to significant Li depletion during the cycling process in full-cell anode-free Li metal batteries. Thus, moderately lithiophilic current collectors, such as LDP@Cu-Ag, show more potential for Li deposition and striping and stable SEI with a low speed of Li depletion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396866 | PMC |
http://dx.doi.org/10.3390/nano14171461 | DOI Listing |
Nanoscale
January 2025
College of Science, China Agricultural University, Beijing, 100083, China.
Aqueous zinc-ion batteries are an appealing electrochemical energy storage solution due to their affordability and safety. Significant attention has been focused on vanadium oxide cathode materials for ZIBs, owing to their high specific capacity, unique layered or tunnel structures, and low cost. Compared to traditional methods for preparing and assembling electrode materials, direct current (DC) magnetron sputtering allows direct synthesis and uniform deposition on current collectors, offering advantages such as simplicity, mild reaction conditions, and strong film adhesion.
View Article and Find Full Text PDFNano Lett
January 2025
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Lithium nitrate (LiNO) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a LiN-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal-organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO conversion kinetics and boost LiN generation inside the SEI.
View Article and Find Full Text PDFHardwareX
March 2025
Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
High-performance liquid chromatography (HPLC) is an invaluable technique that has been used for many decades for the separation of various molecules. The reproducible collection of eluates from these systems has been significantly improved via its automation by fraction collection systems. Current commercially available fraction collectors are not easily customizable, incompatible with other platforms, and come with a large cost barrier making them inaccessible to many researchers.
View Article and Find Full Text PDFLangmuir
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!