Ball-Milling Enhanced UV Protection Performance of CaFe-Sulisobenzone Layered Double Hydroxide Organic Clay.

Nanomaterials (Basel)

Materials and Solution Structure Research Group, Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Aradi Vértanúk Tere 1, H-6720 Szeged, Hungary.

Published: September 2024

AI Article Synopsis

  • Researchers used a co-precipitation method to integrate the sunscreen ingredient sulisobenzone into the structure of a hybrid material known as CaFe-hydrocalumite for the first time.
  • They employed various techniques like X-ray diffraction and spectroscopy to analyze the effects of mechanical milling on the material's properties, revealing noticeable changes in structure, surface characteristics, and thermal behavior.
  • Notably, milling enhanced the UV light blocking ability of the material, particularly around 320 nm, due to changes in the interactions between the sulfobenzone anions and the layers of the hydrocalumite structure.

Article Abstract

Using a co-precipitation technique, the anionic form of sulisobenzone (benzophenone-4) sunscreen ingredient was incorporated into the interlayer space of CaFe-hydrocalumite for the first time. Using detailed post-synthetic millings of the photoprotective nanocomposite obtained, we aimed to study the mechanochemical effects on complex, hybridized layered double hydroxides (LDHs). Various physicochemical properties of the ground and the intact LDHs were compared by powder X-ray diffractometry, N adsorption-desorption, UV-Vis diffuse reflectance, infrared and Raman spectroscopy, scanning electron microscopy and thermogravimetric measurements. The data showed significant structural and morphological deformations, surface and textural changes and multifarious thermal behavior. The most interesting development was the change in the optical properties of organic LDHs; the milling significantly improved the UV light blocking ability, especially around 320 nm. Spectroscopic results verified that this could be explained by a modification in interaction between the LDH layers and the sulisobenzone anions, through modulated π-π conjugation and light absorption of benzene rings. In addition to the vibrating mill often used in the laboratory, the photoprotection reinforcement can also be induced by the drum mill grinding system commonly applied in industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397241PMC
http://dx.doi.org/10.3390/nano14171436DOI Listing

Publication Analysis

Top Keywords

layered double
8
ball-milling enhanced
4
enhanced protection
4
protection performance
4
performance cafe-sulisobenzone
4
cafe-sulisobenzone layered
4
double hydroxide
4
hydroxide organic
4
organic clay
4
clay co-precipitation
4

Similar Publications

Background: As the primary cause of various preventable illnesses, smoking results in approximately five million premature deaths each year in the US and a multitude of adults living with serious illness. The majority of smokers know the health risks associated with smoking and intend to quit. However, quitting is very difficult partly because of insomnia and stress associated with it.

View Article and Find Full Text PDF

Poly(butylene succinate-co-adipate) (PBSA), a biodegradable plastic, is significantly colonized and degraded by soil microbes under natural field conditions, especially by fungal plant pathogens, raising concerns about potential economic losses. This study hypothesizes that the degradation of biodegradable plastics may increase the presence and abundance of plant pathogens by serving as an additional carbon source, ultimately posing a risk to forest ecosystems. We investigated (i) fungal plant pathogens during the exposure of PBSA in European broadleaved and coniferous forests (two forest types), with a specific focus on potential risk to tree health, and (ii) the response of such fungi to environmental factors, including tree species, soil pH, nutrient availability, moisture content, and the physicochemical properties of leaf litter layer.

View Article and Find Full Text PDF

Optimizing Formation Energy Barrier of NiCo-LDH Cocatalyst to Enhance Photoelectrochemical Benzyl Alcohol Oxidation.

J Phys Chem Lett

December 2024

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China.

Using organic oxidation reactions to replace the oxygen evolution reaction is a promising approach for producing high-value organic products and hydrogen. Here, we report a photoelectrochemical benzyl alcohol oxidation system based on an α-FeO photoanode coated with a NiCo-layered double hydroxide (NiCo-LDH) cocatalyst. By adjustment of the relative content of Ni and Co in the NiCo-LDH, the optimized photoanode achieved a benzyl alcohol conversion efficiency of 99.

View Article and Find Full Text PDF

Two-dimensional Nanosheets by Liquid Metal Exfoliation.

Adv Mater

December 2024

Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions.

View Article and Find Full Text PDF

A low-temperature-tolerant and non-flammable cellulose/HEC/PVA eutectogel for flexible asymmetric supercapacitors.

Int J Biol Macromol

December 2024

School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, PR China. Electronic address:

Asymmetric supercapacitors (ASCs), which combine the advantages of electric double-layer capacitors and pseudocapacitors, have attracted more and more research interest. However, the performance of water-based ASCs often faces the challenge of electrolyte freezing at low temperatures. To resolve the problem, a ternary deep eutectic solvent (DES) with an eutectic point of less than -100 °C was first prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!