Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The long-wave infrared (LWIR) interband cascade detector with type-II superlattices (T2SLs) and a gallium-free ("Ga-free") InAs/InAsSb (x = 0.39) absorber was characterized by photoluminescence (PL) and spectral response (SR) methods. Heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate (001) orientation. The crystallographic quality was confirmed by high-resolution X-Ray diffraction (HRXRD). Two independent methods, combined with theoretical calculations, were able to determine the transitions between the superlattice minibands. Moreover, transitions from the trap states were determined. Studies of the PL intensity as a function of the excitation laser power allowed the identification of optical transitions. The determined effective energy gap (E) of the tested absorber layer was 116 meV at 300 K. The transition from the first light hole miniband to the first electron miniband was red-shifted by 76 meV. The detected defects' energy states were constant versus temperature. Their values were 85 meV and 112 meV, respectively. Moreover, two additional transitions from acceptor levels in cryogenic temperature were determined by being shifted from blue to E by 6 meV and 16 meV, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397115 | PMC |
http://dx.doi.org/10.3390/nano14171393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!