Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To investigate hydrogen behaviors in the high-entropy alloy AlCrTiNiV, density functional theory and transition state theory were used to explore the molecular H2 absorption and dissociation and the atomic H adsorption, diffusion, and penetration progress. The H2 molecule, where the H-H band is parallel to the surface layer, is more inclined to absorb on the top site of the Ti atom site of first atomic layer on the AlCrTiNiV surface, then diffuse into the hollow sites, through the bridge site, after dissociating into two H atoms. Atomic H is more likely to be absorbed on the hollow site. The absorption capacity for atomic H on the surface tends to decline with the increase in H coverage. By calculating the energy barriers of atomic H penetration in AlCrTiNiV, it was indicated that lattice distortion may be one important factor that impacts the permeation rate of hydrogen. Our theory research suggests that high-entropy alloys have potential for use as a hydrogen resistant coating material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397346 | PMC |
http://dx.doi.org/10.3390/nano14171391 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!