A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism for Adsorption, Dissociation, and Diffusion of Hydrogen in High-Entropy Alloy AlCrTiNiV: First-Principles Calculation. | LitMetric

To investigate hydrogen behaviors in the high-entropy alloy AlCrTiNiV, density functional theory and transition state theory were used to explore the molecular H2 absorption and dissociation and the atomic H adsorption, diffusion, and penetration progress. The H2 molecule, where the H-H band is parallel to the surface layer, is more inclined to absorb on the top site of the Ti atom site of first atomic layer on the AlCrTiNiV surface, then diffuse into the hollow sites, through the bridge site, after dissociating into two H atoms. Atomic H is more likely to be absorbed on the hollow site. The absorption capacity for atomic H on the surface tends to decline with the increase in H coverage. By calculating the energy barriers of atomic H penetration in AlCrTiNiV, it was indicated that lattice distortion may be one important factor that impacts the permeation rate of hydrogen. Our theory research suggests that high-entropy alloys have potential for use as a hydrogen resistant coating material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397346PMC
http://dx.doi.org/10.3390/nano14171391DOI Listing

Publication Analysis

Top Keywords

high-entropy alloy
8
alloy alcrtiniv
8
atomic
5
mechanism adsorption
4
adsorption dissociation
4
dissociation diffusion
4
hydrogen
4
diffusion hydrogen
4
hydrogen high-entropy
4
alcrtiniv
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!