Continuous particle focusing by using microfluidics is an effective method for separating particles, cells, or droplets for analytical purposes. Previously, it was shown that an alternating current across rectangular microchannels with slightly deformed side walls results in vortex flow patterns caused by alternating current electroosmosis (AC-EOF) and could lead to particle focusing. In this work, we explore this mechanism by experimentally studying the particle focusing behavior for various fluid flow velocities through a microchannel. Since it is unlikely that the particles are kept in their focused position solely by convection, a theoretical force balance between the hydrodynamic and the induced dipole force was determined. In our experiments, it was found that there is no substantial effect of the pressure-driven fluid velocity on the particle focusing velocity within the studied range. From the theoretical force balance calculations, it was determined that while the addition of the induced dipole force can still not completely describe the experimentally observed particle focusing, the induced dipole can be strong enough to overcome the hydrodynamic force. Finally, it is hypothesized that under specific circumstances, including a repulsive electrostatic force between a particle and electrode wall can complete the theoretical particle focusing force balance. Alternative phenomena that could also play a role in particle focusing are proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428184 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.4c02135 | DOI Listing |
Polymers (Basel)
December 2024
Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
The present work focuses on the synthesis and characterization of biobased lignin-poly(lactic) acid (PLA) composites. Organosolv lignin, extracted from beechwood, was used as a filler at 0.5, 1.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
The paper highlights the realization of 3D-printed parts with complex geometries, such as chess-like pieces, using polyamide 12 (PA12) as polymeric powder via selective laser sintering (SLS). The research activity focuses on the study of the powder printability, the optimization of the printing parameters, and the tomographic evaluation of the printed objects. Morphological analyses were carried out to study the PA12 powder microstructure considering that SLS required specific particle size distribution and shape, able to guarantee a good flowability necessary to take part in a sintering process.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
The capsid proteins of many viruses are capable of spontaneous self-assembly into virus-like particles (VLPs), which do not contain the viral genome and are therefore not infectious. VLPs are structurally similar to their parent viruses and are therefore effectively recognized by the immune system and can induce strong humoral and cellular immune responses. The structural features of VLPs make them an attractive platform for the development of potential vaccines and diagnostic tools.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Agronomy College, Jinlin Agricultural University, Changchun 130118, China.
Straw return plays a vital role in crop yield and sustainable agriculture. Extensive research has focused on the potential to enhance soil fertility and crop yield through straw return. However, the potential impacts of straw return on saline-sodic soils have been relatively neglected due to the unfavorable characteristics of saline-sodic soils, such as high salinity, poor structure, and low nutrient contents, which are not conducive to crop growth.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
Psoriatic arthritis (PsA), a chronic inflammatory disease, mainly affects the joints, with approximately 30% of psoriasis patients eventually developing PsA. Characterized by both innate and adaptive immune responses, PsA poses significant challenges for effective treatment. Recent advances in drug delivery systems have sparked interest in developing novel formulations to improve therapeutic outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!