RNA-binding proteins (RBPs) are attractive targets in human pathologies. Despite a number of efforts to target RBPs with small molecules, it is still difficult to develop RBP inhibitors, asking for a deeper understanding of how to chemically perturb RNA-binding activity. In this study, we found that the thiopurine drugs (6-mercaptopurine and 6-thioguanine) effectively disrupt CELF1-RNA interaction. The disrupting activity relies on the formation of disulfide bonds between the thiopurine drugs and CELF1. Mutating the cysteine residue proximal to the RNA recognition motifs (RRMs), or adding reducing agents, abolishes the disrupting activity. Furthermore, the 1,2,4-triazole-3-thione, a thiopurine analogue, was identified with 20-fold higher disrupting activity. Based on this analogue, we found that compound 9 disrupts CELF1-RNA interaction in living cells and ameliorates CELF1-mediated myogenesis deficiency. In summary, we identified a thiol-mediated binding mechanism for thiopurine drugs and their derivatives to perturb protein-RNA interaction, which provides novel insight for developing RBP inhibitors. Additionally, this work may benefit the pharmacological and toxicity research of thiopurine drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472155 | PMC |
http://dx.doi.org/10.1093/nar/gkae788 | DOI Listing |
Metabolites
December 2024
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.
View Article and Find Full Text PDFBackground: Differentiation of patient-specific induced pluripotent stem cells (iPS) helps researchers to study the individual sensibility to drugs. However, differentiation protocols are time-consuming, and not all tissues have been studied. Few works are available regarding pancreatic exocrine differentiation of iPS cells, and little is known on culturing and cryopreserving these cells.
View Article and Find Full Text PDFPharmacotherapy
November 2024
The University of Sydney School of Pharmacy, Camperdown, New South Wales, Australia.
Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.
Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.
Pharmacogenomics J
November 2024
Department of Clinical Chemistry, Catharina Hospital, Eindhoven, the Netherlands.
Chemotherapy
November 2024
Service and Laboratory of Clinical Pharmacology, Department of Internal Medicine and Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Background: Despite major advances in cancer treatment in the past years, there is a need to optimize chemotherapeutic drug dosing strategies to reduce toxicities, suboptimal responses, and the risk of relapse. Most cancer drugs have a narrow therapeutic index with substantial pharmacokinetics variability. Yet, current dosing approaches do not fully account for the complex pathophysiological characteristics of the patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!