Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper deals with the problem of estimating confidence regions of a set of uncertain spatial displacements for a given level of confidence or probabilities. While a direct application of the commonly used statistic methods to the coordinates of the moving frame is straight-forward, it is also the least effective in that it grossly overestimate the confidence region. Based on the dual-quaternion representation, this paper introduces the notion of the kinematic confidence ellipsoids as an alternative to the existing method called rotation and translation confidence limit (RTCL). An example is provided to demonstrate how the kinematic confidence ellipsoids can be computed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392034 | PMC |
http://dx.doi.org/10.1007/978-3-031-45705-0_75 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!