AI Article Synopsis

  • Gene amplification and protein overexpression of HER2 are significant markers for prognosis and treatment in invasive breast carcinoma (IBC), with accurate IHC scoring (0 to 3+) being crucial for appropriate patient classification.
  • ASCO/CAP recommends HER2 assessment through immunohistochemistry (IHC) and hybridization (ISH) tests, highlighting the importance of differentiating between HER2 IHC scores (especially 0, 1+, and 2+/ISH-) to optimize targeted therapies.
  • A study analyzed 32 calibration and 77 validation datasets using software for HER2 IHC scoring, demonstrating high concordance and sensitivity between manual and semi-automated methods, yet noting challenges like staining artifacts that could affect accuracy.

Article Abstract

() gene amplification and subsequent protein overexpression is a strong prognostic and predictive biomarker in invasive breast carcinoma (IBC). ASCO/CAP recommended tests for HER2 assessment include immunohistochemistry (IHC) and/or hybridization (ISH). Accurate HER2 IHC scoring (0, 1+, 2+, 3+) is key for appropriate classification and treatment of IBC. HER2-targeted therapies, including anti-HER2 monoclonal antibodies and antibody drug conjugates (ADC), have revolutionized the treatment of HER2-positive IBC. Recently, ADC have also been approved for treatment of HER2-low (IHC 1+, IHC 2+/ISH-) advanced breast carcinoma, making a distinction between IHC 0 and 1+ crucial. In this focused study, 32 IBC with HER2 IHC scores from 0 to 3+ and HER2 FISH results formed a calibration dataset, and 77 IBC with HER2 IHC score 2+ and paired FISH results (27 amplified, 50 non-amplified) formed a validation dataset. H&E and HER2 IHC whole slide images (WSI) were scanned. Regions of interest were manually annotated and IHC scores generated by the software QuantCenter (MembraneQuant application) by 3DHISTECH Ltd. (Budapest, Hungary) and compared to the microscopic IHC score. H-scores [(3×%IHC3+) +(2×%IHC2+) +(1×%IHC1+)] were calculated for semi-automated (MembraneQuant) analysis. Concordance between microscopic IHC scoring and 3DHISTECH MembraneQuant semi-automated scoring in the calibration dataset showed a Kappa value of 0.77 (standard error 0.09). Microscopic IHC and MembraneQuant image analysis for the detection of amplification yielded a sensitivity of 100% for both and a specificity of 56% and 61%, respectively. In the validation set of IHC 2+ cases, only 13 of 77 cases (17%) had discordant results between microscopic and MembraneQuant images, and various artifacts limiting the interpretation of HER2 IHC, including cytoplasmic/granular staining and crush artifact were noted. Semi-automated analysis using WSI and microscopic evaluation yielded similar HER2 IHC scores, demonstrating the potential utility of this tool for interpretation in clinical practice and subsequent accurate treatment. In this study, it was shown that semi-automatic HER2 IHC interpretation provides an objective approach to a test known to be quite subjective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390455PMC
http://dx.doi.org/10.3389/pore.2024.1611826DOI Listing

Publication Analysis

Top Keywords

her2 ihc
28
ihc
16
breast carcinoma
12
ihc scores
12
microscopic ihc
12
her2
10
semi-automated analysis
8
invasive breast
8
slide images
8
interpretation clinical
8

Similar Publications

The detection of Estrogen Receptor (ER), Progesterone Receptor (PR), and Human epidermal growth factor receptor 2 (HER-2) is important for the stratification of breast cancer and the selection of therapeutic modalities. This study aimed to determine the quantitative expression of ER, PR and HER-2 using Immunohistochemistry and their correlation with quantitative baseline Ct values measured using Quantitative Polymerase Chain Reaction (PCR). This study also assessed the use of fresh breast tissue biopsies preserved in RNAlater solution in the quantitative detection of these receptors using PCR technique.

View Article and Find Full Text PDF

Breast cancer is the most frequent non-dermatologic malignancy in women. Breast cancer is characterized by the expression of the human epidermal growth factor receptor type 2 (HER2), and the presence or lack of estrogen receptor (ER) and progesterone receptor (PR) expression. HER2 overexpression is reported in about 20 to 25% of breast cancer patients, which is usually linked to cancer progression, metastases, and poor survival.

View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate the radiobiological effects underlying the inhibition of breast cancer (BCa) following radiotherapy in nude mice models, and to evaluate the impact of changes in immunohistochemical parameters induced by FF and FFF beams.

Materials And Methods: The study included thirty-six adult nude mouse models, which were randomly assigned to five groups: control (G1), breast cancer (BCa) (G2), FF-400 MU/min (G3), FFF-1100 MU/min (G4), and FFF-1800 MU/min (G5). The control group received neither radiation nor treatment, while the BCa group had a cancer model without radiation.

View Article and Find Full Text PDF

Background: Breast cancer (BC) is a significant burden on healthcare systems, especially in low- and middle-income countries where access to diagnosis and treatment is challenging.

Objectives: The purpose of this study was to assess the diagnostic accuracy and cost using tissue microarray (TMA) instead of traditional immunohistochemical (IHC) evaluation for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and the proliferation marker Ki-67 and BC subtyping within the Brazilian public health system.

Design: This is a retrospective cohort study comparing TMA slides with traditional whole-slide evaluation for IHC markers in 242 BC cases.

View Article and Find Full Text PDF

We aimed to investigate whether estrogen receptor (ER) status affects the predictive role of the human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) score on the efficacy of neoadjuvant treatment for HER2-positive breast cancer. This retrospective study comprised 167 individuals diagnosed with HER2-positive invasive breast cancer who had undergone neoadjuvant treatment and surgery. Uni- and multivariable logistic regression analyses were performed on the relationship between the HER2 IHC score and total pathological complete response (tpCR), breast pathological complete response (bpCR), or axillary partial response (apCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!