Introduction: Sex differences in vulnerability to opioid use disorder (OUD) have been reported in some clinical and preclinical studies, but findings are mixed and further research is needed in this area. The goal of this study was to compare elasticity of demand (reinforcement efficacy) in an i.v. morphine self-administration (SA) model in male and female rats using a translationally relevant behavioral economics approach. Rate of acquisition and predictors of individual differences in demand (e.g., cumulative morphine infusions during acquisition) were also evaluated in both sexes.
Materials Methods And Results: Acquisition of morphine SA (0.4 mg/kg/infusion) under a fixed ratio (FR) 1 schedule of reinforcement was slower and infusions earned were lower in females than in males ( = 30-31/sex), but infusions earned did not differ between sexes during the FR 2 and FR 3 phases of acquisition. Increases in the FR response requirement across sessions during demand testing (FR 1-FR 96) resulted in a progressive reduction in morphine infusions in both sexes. Morphine consumption was well-described by an exponential demand function in both sexes and was associated with considerable individual vulnerability. There were no sex differences in elasticity of demand (rate of decline in morphine consumption with increasing price) or intensity of demand (consumption at zero price). A higher number of infusions earned during the FR 2 and FR 3 phases of acquisition and greater maximum response rates during demand testing were associated with lower demand elasticity (i.e., greater reinforcing efficacy) in both males and females, whereas other relationships were sex-specific (e.g., higher intensity of demand was associated with lower elasticity of demand in males but not in females).
Conclusion: Our findings indicate similar elasticity of demand and predictors of individual differences in demand for morphine in male and female rats, although sex differences were observed in initial rate of acquisition and in some correlations between morphine SA measures. These data are consistent with findings of similar OUD vulnerability in males and females in some human and animal studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390466 | PMC |
http://dx.doi.org/10.3389/fnbeh.2024.1443364 | DOI Listing |
Circ Res
January 2025
Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Examining the mechanical properties of polymer thin films is crucial for high-performance applications such as displays, coatings, sensors, and thermal management. It is important to design thin film microstructures that excel in high-demand situations without compromising mechanical integrity. Here, a polymer blend of polystyrene (PS) and polyisoprene (PI) is used as a model to explore microscale deformation behavior under uniaxial mechanical testing.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Centre for Aeronautics, Faculty of Engineering and Applied Sciences, Cranfield University, Bedford MK43 0AL, UK.
A Flapping-Wing Rotor (FWR) is a novel bio-inspired micro aerial vehicle configuration, featuring unique wing motions which combine active flapping and passive rotation for high lift production. Power efficiency in flight has recently emerged as a critical factor in FWR development. The current study investigates an elastic flapping mechanism to improve FWRs' power efficiency by incorporating springs into the system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!