AI Article Synopsis

  • Extracellular vesicles (EVs) have gained attention in recent years for their involvement in cancer and other diseases, shifting the perception from being waste disposal mechanisms for cells to active players in cellular communication.
  • The review focuses on glioblastoma, a highly aggressive brain tumor, emphasizing how EVs contribute to communication within its heterogeneous tumor environment and their role in evading immune responses.
  • It highlights the influence of EVs from glioblastoma, immune cells, and the microbiome on local tumor dynamics and immune interactions, suggesting their potential in affecting treatment outcomes, particularly with immunotherapies.

Article Abstract

Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390556PMC
http://dx.doi.org/10.3389/fimmu.2024.1423232DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
12
extracellular vesicles
8
immune
5
evs
5
decoding secret
4
secret extracellular
4
vesicles immune
4
immune tumor
4
microenvironment glioblastoma
4
glioblastoma border
4

Similar Publications

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

A Universal Strategy of Anti-Tumor mRNA Vaccine by Harnessing "Off-the-Shelf" Immunity.

Adv Sci (Weinh)

January 2025

National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Personalized neoantigen cancer mRNA vaccines are promising candidates for precision medicine. However, the difficulty of identifying neoantigens heavily hinders their broad applicability. This study developed a universal strategy of anti-tumor mRNA vaccine by harnessing "off-the-shelf" immunity to known antigens.

View Article and Find Full Text PDF

Glioblastoma presents a significant treatment challenge due to the blood-brain barrier (BBB) hindering drug delivery, and the overexpression of matrix metalloproteinases (MMPs), which promotes tumor invasiveness. This study introduces a novel nanostructured lipid carrier (NLC) system designed for the delivery of batimastat, an MMP inhibitor, across the BBB and into the glioblastoma microenvironment. The NLCs were functionalized with epidermal growth factor (EGF) and a transferrin receptor-targeting construct to enhance BBB penetration and entrapment within the tumor microenvironment.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) has a poor prognosis, considerable cellular heterogeneity, and ranks fifth among malignant tumours. Understanding the tumour microenvironment (TME) and intra-tumor heterogeneity (ITH) may lead to the development of novel GC treatments.

Methods: The single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, where diverse immune cells were isolated and re-annotated based on cell markers established in the original study to ascertain their individual characteristics.

View Article and Find Full Text PDF

Cellular Senescence in The Cancer Microenvironment.

J Biochem

January 2025

Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

In this aging society, the number of patients suffering from age-related diseases, including cancer, is increasing. Cellular senescence is a cell fate that involves permanent cell cycle arrest. Accumulated senescent cells in tissues over time present senescence-associated secretory phenotype (SASP) and make the inflammatory context, disturbing the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!