Geographical distribution and diversity patterns of bird species are influenced by climate change. The Rouget's rail () is a ground-dwelling endemic bird species distributed in Ethiopia and Eritrea. It is a near-threatened species menaced by habitat loss, one of the main causes of population declines for bird species. The increasing effects of climate change may further threaten the species' survival. So far, the spatial distribution of this species is not fully documented. With this study, we develop current potential suitable habitat and predict the future habitat shift of . based on environmental data such as bioclimatic variables, population density, vegetation cover, and elevation using 10 algorithms. We evaluated the importance of environmental factors in shaping the bird's distribution and how it shifts under climate change scenarios. We used 182 records of from Ethiopia and nine bioclimatic, population density, vegetation cover, and elevation variables to run the 10 model algorithms. Among 10 algorithms, eight were selected for ensembling models according to their predictive abilities. The current suitable habitats for were predicted to cover an area of about 82,000 km despite being highly fragmented. The model suggested that temperature seasonality (bio4), elevation, and mean daily air temperatures of the driest quarter (bio9) contributed the most to delimiting suitable areas for this species. is sensitive to climate change associated with elevation, which leads shrinking distribution of suitable areas. The projected spatial and temporal pattern of habitat loss of suggests the importance of climate change mitigation and implementing long-term conservation and management strategies for this threatened endemic bird species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392570 | PMC |
http://dx.doi.org/10.1002/ece3.70276 | DOI Listing |
J Environ Manage
January 2025
CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016, Lisboa, Portugal. Electronic address:
Fires are increasingly affecting tropical biomes, where landscape-fire interactions remain understudied. We investigate the fire-proneness-the likelihood of a land use or land cover (LULC) type burning more or less than expected based on availability-in the Brazilian Atlantic Forest (AF). This biodiversity hotspot is increasingly affected by fires due to human activities and climate change.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:
Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFAmbio
January 2025
Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
Curr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!