Background: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity.
Methods: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization.
Results: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus.
Conclusion: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS.
Trial Registration: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395938 | PMC |
http://dx.doi.org/10.1186/s13195-024-01570-0 | DOI Listing |
Mol Divers
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.
View Article and Find Full Text PDFCells
December 2024
Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Neuroimmunology Laboratory, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
Background/objectives: Growing evidence suggests that the gut-brain axis influences brain function, particularly the role of intestinal microbiota in modulating cognitive processes. Probiotics may alter brain function and behavior by modulating gut microbiota, with implications for neurodegenerative diseases like Alzheimer's disease (AD). The purpose of this review is to systematically review the current literature exploring the effects of probiotic supplementation on gut microbiota and cognitive function in AD and mild cognitive impairment (MCI).
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden.
Background: We sought to characterize the cognitive profile among individuals with mild cognitive impairment with Lewy bodies (MCI-LB) to help guide future clinical criteria.
Methods: Systematic review and meta-analysis included MCI-LB studies with cognitive data from PubMed, Embase, Web of Science, and PsycINFO (January 1990 to March 2023). MCI-LB scores were compared to controls, MCI due to Alzheimer's disease (MCI-AD), and dementia with Lewy bodies (DLB) groups with random-effects models.
J Contemp Dent Pract
September 2024
Bibliometrics, Evidence Evaluation and Systematic Reviews (BEERS) Group, Human Medicine Career, Universidad Científica del Sur, Lima, Peru, Phone: +5113171023, e-mail:
Aim: To perform a bibliometric study of periodontal disease and Alzheimer's disease (AD) focusing on trends, collaborative efforts, and emerging patterns.
Materials And Methods: From January 2018 to May 2024, an observational study was carried out utilizing metadata extracted from the Scopus database. A search methodology, specifically designed for this database, was developed using MeSH terms combined with Boolean operators such as "AND" and "OR".
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!