This study aimed to develop a graph neural network (GNN) for automated three-dimensional (3D) magnetic resonance imaging (MRI) visualization and Pfirrmann grading of intervertebral discs (IVDs), and benchmark it against manual classifications. Lumbar IVD MRI data from 300 patients were retrospectively analyzed. Two clinicians assessed the manual segmentation and grading for inter-rater reliability using Cohen's kappa. The IVDs were then processed and classified using an automated convolutional neural network (CNN)-GNN pipeline, and their performance was evaluated using F1 scores. Manual Pfirrmann grading exhibited moderate agreement (κ = 0.455-0.565) among the clinicians, with higher exact match frequencies at lower lumbar levels. Single-grade discrepancies were prevalent except at L5/S1. Automated segmentation of IVDs using a pretrained U-Net model achieved an F1 score of 0.85, with a precision and recall of 0.83 and 0.88, respectively. Following 3D reconstruction of the automatically segmented IVD into a 3D point-cloud representation of the target intervertebral disc, the GNN model demonstrated moderate performance in Pfirrmann classification. The highest precision (0.81) and F1 score (0.71) were observed at L2/3, whereas the overall metrics indicated moderate performance (precision: 0.46, recall: 0.47, and F1 score: 0.46), with variability across spinal levels. The integration of CNN and GNN offers a new perspective for automating IVD analysis in MRI. Although the current performance highlights the need for further refinement, the moderate accuracy of the model, combined with its 3D visualization capabilities, establishes a promising foundation for more advanced grading systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-024-01251-2DOI Listing

Publication Analysis

Top Keywords

neural network
12
automated three-dimensional
8
pfirrmann classification
8
intervertebral disc
8
magnetic resonance
8
resonance imaging
8
pfirrmann grading
8
moderate performance
8
automated
4
three-dimensional imaging
4

Similar Publications

Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, DF, Mexico.

Background: The World Health Organization forecasts a population of 2,000 million people over 60 years by the year 2050, with 7% of this population suffering from dementia. Making a constant clinical-technological evaluation of older adults allows early detection of the disease and provides a better quality of life for the patient. In this sense, the research and development of innovative technological systems for the early detection of the disease, its monitoring and management of the growing number of patients with cognitive diseases has increased in recent years, integrating data collection and its automatic processing based on geriatric metrics into these systems using artificial intelligence (AI) methods.

View Article and Find Full Text PDF

Background: Dementia poses a significant global crisis, yet 60% of cases go undetected, particularly among specific sub-populations. Timely diagnosis is crucial for implementing early intervention strategies. Challenges of current screening tools (e.

View Article and Find Full Text PDF

Background: This study explores Alzheimer's prediction through brain MRI images, utilizing Convolutional Neural Networks (CNNs) and Lime interpretability. Based on an extensive ADNI MRI dataset, we demonstrate promising results in predicting Alzheimer's disease. Local Interpretable Model Agnostic Explanations (LIME) shed light on decision-making processes, enhancing transparency.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation enhances cognition in people with mild cognitive impairment (MCI). Whereas conventional treatment requires daily sessions for 4-6 weeks, accelerated intermittent theta burst stimulation (iTBS) shortens the treatment course to just 3 days, substantially improving feasibility of use in people with MCI. We conducted a Phase I safety and feasibility trial of iTBS in MCI, finding preliminary evidence of cognitive improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!