AI Article Synopsis

  • The article explores the role of short-chain fatty acids (SCFAs) in Parkinson's disease (PD), noting their production through gut microbiota fermentation of dietary fiber.
  • It highlights the links between SCFAs, gut-brain axis dysfunction, and neuroinflammation, all of which are relevant to PD development.
  • The study suggests that SCFAs could be valuable in managing PD by improving gut health, reducing neuroinflammation, and enhancing neuronal survival, based on a thorough literature review.

Article Abstract

The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-024-00779-3DOI Listing

Publication Analysis

Top Keywords

short-chain fatty
8
fatty acids
8
parkinson's disease
8
potential therapeutic
8
role gut-derived
4
gut-derived short-chain
4
acids parkinson's
4
disease emerging
4
emerging function
4
function short-chain
4

Similar Publications

Gut Microbiota Alterations in Patients With Kawasaki Disease.

Arterioscler Thromb Vasc Biol

January 2025

Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars-Sinai Medical Center, Los Angeles, CA.(P.K.J., M.A., M.N.R.).

The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States.

View Article and Find Full Text PDF

Background: Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.

View Article and Find Full Text PDF

Purpose: Anemia during pregnancy can lead to physical and cognitive impairments, fatigue, and postpartum depression. Dietary fiber, as a prebiotic, supports gut health by producing short-chain fatty acids, which enhance immunity and aid iron absorption. This study investigates the impact of fiber supplementation on hemoglobin and reticulocyte hemoglobin equivalent (RET-He) levels in anemic pregnant women receiving oral iron therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!