This study investigates a novel microfluidic mixing technique that uses the resonant oscillation of coalescent droplets. During the vertical contact-separation process, solutes are initially separated as a result of the combined effects of diffusion and gravity. We show that the application of alternating current (AC) voltage to microelectrodes below the droplets causes a resonant oscillation, which enhances the even distribution of the solute. The difference in concentration between the top and bottom droplets exhibits frequency dependence and indicates the existence of a particular AC frequency that results in a homogeneous concentration. This frequency corresponds to the resonance frequency of the droplet oscillation that is determined using particle tracking velocimetry. To understand the mixing process, a phenomenological model based on the equilibrium between surface tension, viscosity, and electrostatic force was developed. This model accurately predicted the resonance frequency of droplet flow and was consistent with the experimental results. These results suggest that the resonant oscillation of droplets driven by AC voltage significantly enhances the diffusion of solutes, which is an effective approach to microfluid mixing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393098PMC
http://dx.doi.org/10.1038/s41598-024-72089-5DOI Listing

Publication Analysis

Top Keywords

resonant oscillation
16
oscillation droplets
8
resonance frequency
8
frequency droplet
8
droplets
5
frequency
5
resonant
4
droplets alternating
4
alternating electric
4
electric field
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!