With the advancement of 3D scanning technologies and deep learning theories, point cloud-based deep learning networks have gained considerable attention in the fields of 3D vision and computer graphics. Leveraging the rich geometric information present in 3D point clouds, these networks facilitate more accurate feature learning tasks. However, existing networks often suffer from generalization defects caused by variations in pose and inconsistent representations of training data. In this paper, we propose a novel data augmentation framework to overcome these limitations. Our approach utilizes principal component analysis (PCA) to generate four aligned copies of a point cloud. These copies are then input into a multi-channel structure, which is compatible with popular backbones of point cloud-based deep networks. Finally, the outputs of the multi-channel structure are merged to generate rotation-invariant feature learning results. Experimental evaluations demonstrate the efficacy of our framework, showcasing significant improvements in various existing point cloud-based deep learning methods. Notably, our method exhibits enhanced robustness in classification tasks, particularly when dealing with point clouds containing random pose variations and non-uniform densities. Project link: https://github.com/LAB123-tech/PCAlign .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393107 | PMC |
http://dx.doi.org/10.1038/s41598-024-72264-8 | DOI Listing |
J Colloid Interface Sci
January 2025
Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:
Sensors (Basel)
January 2025
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.
Drones are extensively utilized in both military and social development processes. Eliminating the reliance of drone positioning systems on GNSS and enhancing the accuracy of the positioning systems is of significant research value. This paper presents a novel approach that employs a real-scene 3D model and image point cloud reconstruction technology for the autonomous positioning of drones and attains high positioning accuracy.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Geosciences, Yangtze University, Wuhan 430100, China.
Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Cryptography Engineering, Engineering University of PAP, Xi'an 710086, China.
With the rapid development of the Internet of Things (IoT), the scope of personal data sharing has significantly increased, enhancing convenience in daily life and optimizing resource management. However, this also poses challenges related to data privacy breaches and holdership threats. Typically, blockchain technology and cloud storage provide effective solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!