Type 2 diabetes (T2D) is associated with a systemic increase in the pro-inflammatory cytokine IL-1β. While transient exposure to low IL-1β concentrations improves insulin secretion and β-cell proliferation in pancreatic islets, prolonged exposure leads to impaired insulin secretion and collective β-cell death. IL-1 is secreted locally by islet-resident macrophages and β-cells; however, it is unknown if and how the two opposing modes may emerge at single islet level. We investigated the duality of IL-1β with a quantitative in silico model of the IL-1 regulatory network in pancreatic islets. We find that the network can produce either transient or persistent IL-1 responses when induced by pro-inflammatory and metabolic cues. This suggests that the duality of IL-1 may be regulated at the single islet level. We use two core feedbacks in the IL-1 regulation to explain both modes: First, a fast positive feedback in which IL-1 induces its own production through the IL-1R/IKK/NF-κB pathway. Second, a slow negative feedback where NF-κB upregulates inhibitors acting at different levels along the IL-1R/IKK/NF-κB pathway-IL-1 receptor antagonist and A20, among others. A transient response ensues when the two feedbacks are balanced. When the positive feedback dominates over the negative, islets transit into the persistent inflammation mode. Consistent with several observations, where the size of islets was implicated in its inflammatory state, we find that large islets and islets with high density of IL-1β amplifying cells are more prone to transit into persistent IL-1β mode. Our results are likely not limited to IL-1β but are general for the combined effect of multiple pro-inflammatory cytokines and chemokines. Generalizing complex regulations in terms of two feedback mechanisms of opposing nature and acting on different time scales provides a number of testable predictions. Taking islet architecture and cellular heterogeneity into consideration, further dynamic monitoring and experimental validation in actual islet samples will be crucial to verify the model predictions and enhance its utility in clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393080 | PMC |
http://dx.doi.org/10.1038/s41540-024-00427-4 | DOI Listing |
Mol Cell Endocrinol
January 2025
Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah United Arab Emirates.
Vitamin D (VD) has been implicated in regulating insulin secretion and pancreatic β-cell function. Yet, the underlying molecular mechanism of VD in glucose homeostasis is not fully understood. This study investigates the effect of VD in regulating insulin secretion and pancreatic β-cell function.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:
Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Nervous System Development, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Tsurupi Street, 3, 117418 Moscow, Russia.
Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.
View Article and Find Full Text PDFBiomedicines
December 2024
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
: Over the past 40 years since the discovery of regenerating family proteins (Reg proteins), numerous studies have highlighted their biological functions in promoting cell proliferation and resisting cell apoptosis, particularly in the regeneration and repair of pancreatic islets and exocrine glands. Successively, short peptides derived from Reg3δ and Reg3α have been employed in clinical trials, showing favorable therapeutic effects in patients with type I and type II diabetes. However, continued reports have been limited, presumably attributed to the potential side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!