We present a new scheme for Majorana modes in systems with nonsymmorphic-symmetry-protected band degeneracy. We reveal that when the gapless fermionic excitations are encoded with conventional superconductivity and magnetism, which can be intrinsic or induced by proximity effect, topological superconductivity and Majorana modes can be obtained. We illustrate this outcome in a system which respects the space group P4/nmm and features a fourfold-degenerate fermionic mode at (π,  π) in the Brillouin zone. We show that in the presence of conventional superconductivity, different types of topological superconductivity, i.e., first-order and second-order topological superconductivity, with coexisting fragile Wannier obstruction in the latter case, can be generated in accordance with the different types of magnetic orders; Majorana modes are shown to exist on the boundary, at the corner and in the vortices. To further demonstrate the effectiveness of our approach, another example related to the space group P4/ncc based on this scheme is also provided. Our study offers insights into constructing topological superconductors based on bulk energy bands and conventional superconductivity and helps to find new material candidates and design new platforms for realizing Majorana modes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393466PMC
http://dx.doi.org/10.1038/s41467-024-52156-1DOI Listing

Publication Analysis

Top Keywords

topological superconductivity
16
majorana modes
16
conventional superconductivity
12
band degeneracy
8
space group
8
superconductivity
6
topological
5
superconductivity unconventional
4
unconventional band
4
conventional
4

Similar Publications

Article Synopsis
  • Discovering the optoelectronic properties of transition metal dichalcogenides (TMDCs) is crucial for next-gen electronic devices, with a focus on the impact of external strains on Dirac states, an area still being explored.
  • A comprehensive database of 90 TMDC types was created, revealing that 27.3% exhibit Dirac materials with three distinct types of Dirac cones, influenced by external strain-induced electron localization.
  • The study shows that TMDCs from tellurides with 1H phase enhance the formation of Dirac cones under stress, leading to metallic properties and increased charge transport, ultimately offering insights for the development of TMDCs in superconducting and optoelectronic applications.
View Article and Find Full Text PDF

Pseudotunnel Magnetoresistance in Twisted van der Waals FeGeTe Homojunctions.

Adv Mater

January 2025

Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.

Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.

View Article and Find Full Text PDF

Flexible Control of Chiral Superconductivity in Optically Driven Nodal Point Superconductors with Antiferromagnetism.

Phys Rev Lett

December 2024

Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.

Article Synopsis
  • Recent studies focus on creating hybrid systems of magnets and superconductors that exhibit topological superconductivity.
  • The research demonstrates that using Floquet engineering with antiferromagnetic layers and s-wave superconductors can induce chiral topological superconductivity through light interaction that disrupts time-reversal symmetry.
  • The ability to control these topological phases with elliptically polarized light offers a novel way to manipulate superconducting properties through related changes in valley pairs, making this approach promising for experimental exploration.
View Article and Find Full Text PDF

Mapping the Topological Proximity-Induced Gap in Multiterminal Josephson Junctions.

Phys Rev Lett

December 2024

Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with three or more superconducting leads, have been proposed as artificial analogs of topological crystals. The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states (DOS) in the normal metal that may be probed by tunneling measurements. We show that one can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts, which shows rich structure as a function of the phase differences {ϕ_{i}}.

View Article and Find Full Text PDF

Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!