Cu(I)-Induced 'Click Reaction' Involving Coordination and Covalent Assembly of Hybrid Borates for the Electrocatalytic CO Reduction.

Angew Chem Int Ed Engl

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences., Fuzhou, Fujian 350002, P. R. China.

Published: December 2024

The design and synthesis of hybrid borates by the organic ligand modification method are urgent and undeveloped areas of research. It is difficult to directly integrate organoboronic acids within inorganic borate chemistry by adopting the traditional preparation approaches. This work reports a facile synthetic method to synthesize a large family of pyrazole molecule-protected borates in a rapid and precise manner under mild conditions. A unique cyclic eight-membered BO-ring has been identified as the cluster core for all these hybrid borates with two different conformations (boat and crown). This strategy can be applied to a system of pyrazolyl molecules to generate such hybrid borates in two independent routes from organoboronic or inorganic boric acids. Furtherly, the mechanism of 'click reaction' between boric acid and pyrazole induced by copper ions has been proposed based on the synthetic conditions and the structure of intermediate. Due to the bimetallic Cu sites and the functional surfaces, these materials can be used as electrocatalysts for CO reduction reaction and efficiently enhance the selectivity of HCOOH and CH. Our strategy can be regarded as a typical template technique for organic molecule-protected borates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412073DOI Listing

Publication Analysis

Top Keywords

hybrid borates
16
'click reaction'
8
molecule-protected borates
8
borates
6
cui-induced 'click
4
reaction' involving
4
involving coordination
4
coordination covalent
4
covalent assembly
4
hybrid
4

Similar Publications

Insight into the Origin of Second Harmonic Generation and Rational Design in the Metal Halide Borates.

Inorg Chem

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.

Metal halide borates are promising candidates for high-performance nonlinear optical (NLO) applications, yet the origins of their second harmonic generation (SHG) properties remain unclear. Using atom response theory combined with density functional theory calculations, this study investigates why halogen substitution leads to distinctly different SHG responses in halide monoborates (PbBOX) versus halide pentaborates (PbBOX). We find that the SHG origins vary between these two families due to differences in the strength of the Pb-X interactions.

View Article and Find Full Text PDF

A Polysaccharide-Calcium Carbonate Microsphere-Doped Hydrogel for Accelerated Diabetic Wound Healing via Synergistic Glucose-Responsive Hypoglycemic and Anti-Inflammatory Effects.

ACS Biomater Sci Eng

January 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China.

Article Synopsis
  • Long-term hyperglycemia and inflammation in diabetes often lead to chronic wounds that do not heal, but a new hydrogel with plant polysaccharides shows promise in promoting healing.
  • This hydrogel, PL-PVA/DOP-CaCO, is engineered to release insulin in response to high glucose levels and has anti-inflammatory properties, enhancing the wound healing process.
  • In studies, this hydrogel improved healing in diabetic rats by regulating blood sugar, reducing inflammation, and boosting the growth of cells essential for wound recovery.
View Article and Find Full Text PDF

Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.

View Article and Find Full Text PDF

Herein, we demonstrated that a polycrystalline cobalt oxide/borate (CoO-Bo) hybrid catalyst prepared by coprecipitation followed a simple annealing process with a viable boron source of less hazardous ammonium borate, an efficient electrocatalyst for the oxygen evolution reaction (OER). The borate species in the crystalline cobalt oxide lattice provides a tunable polycrystalline morphology with a defect-rich lattice and numerous grain boundaries in the CoO-Bo hybrid electrocatalyst, which significantly boosts the OER activity compared to the crystalline counterparts of CoO and precious IrO in a harsh alkaline electrolyte (1 M KOH). The borate modulated CoO-Bo achieves a 10 mA/cm geometrical current density for the OER with a very low overpotential (η) of 271 mV and small Tafel slope of 34 mV dec, in an inert glassy carbon (GC) support, while only requiring η of 267 and 32 mV dec in a 3D nickel foam (NF) support at the same current density.

View Article and Find Full Text PDF

Collaboration of cancerous cells and microenvironment is the root for tumor spreading, leading to difficulty in complete metastasis blockage via mono-intervention. Herein, a triple-responsive nanoassembly is designed for orienting tumor cells and migration-driving M2 tumor associated macrophages (TAMs) in microenvironment for efficient anti-metastatic therapy. Structurally, a reactive oxygen species (ROS)-responsive crosslinked short-chain polyquaternium is synthesized to bridge graphene oxide (GO) scaffold with apolipoprotein A-I crown via borate-crosslinking, electrostatic adherence, and coordinative coupling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!