Studies employing EEG to measure somatosensory responses have been typically optimized to compute event-related potentials in response to discrete events. However, tactile interactions involve continuous processing of nonstationary inputs that change in location, duration, and intensity. To fill this gap, this study aims to demonstrate the possibility of measuring the neural tracking of continuous and unpredictable tactile information. Twenty-seven young adults (females, 15) were continuously and passively stimulated with a random series of gentle brushes on single fingers of each hand, which were covered from view. Thus, tactile stimulations were unique for each participant and stimulated fingers. An encoding model measured the degree of synchronization between brain activity and continuous tactile input, generating a temporal response function (TRF). Brain topographies associated with the encoding of each finger stimulation showed a contralateral response at central sensors starting at 50 ms and peaking at ∼140 ms of lag, followed by a bilateral response at ∼240 ms. A series of analyses highlighted that reliable tactile TRF emerged after just 3 min of stimulation. Strikingly, topographical patterns of the TRF allowed discriminating digit lateralization across hands and digit representation within each hand. Our results demonstrated for the first time the possibility of using EEG to measure the neural tracking of a naturalistic, continuous, and unpredictable stimulation in the somatosensory domain. Crucially, this approach allows the study of brain activity following individualized, idiosyncratic tactile events to the fingers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429829 | PMC |
http://dx.doi.org/10.1523/ENEURO.0238-24.2024 | DOI Listing |
Heliyon
December 2024
Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan.
Objective: Myasthenia gravis (MG), a low-prevalence autoimmune disorder characterized by clinical heterogeneity and unpredictable disease fluctuations, presents significant risks of acute exacerbations requiring intensive care. These crises contribute substantially to patient morbidity and mortality. This study aimed to develop and validate machine-learning models for predicting intensive care unit (ICU) admission risk among patients with MG-related disease instability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China. Electronic address:
The interleukin-17 (IL-17) family, encompassing IL-17A to IL-17F, plays pivotal roles across various biomedical fields. IL-17A, a prominent cytokine, has garnered significant attention. However, the pathological effects of IL-17 can often be unpredictable.
View Article and Find Full Text PDFNat Commun
January 2025
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
Hemodialysis for chronic kidney disease (CKD) relies on vascular access (VA) devices, such as arteriovenous fistulas (AVF), grafts (AVG), or catheters, to maintain blood flow. Nonetheless, unpredictable progressive vascular stenosis due to neointimal formation or complete occlusion from acute thrombosis remains the primary cause of mature VA failure. Despite emergent surgical intervention efforts, the lack of a reliable early detection tool significantly reduces patient outcomes and survival rates.
View Article and Find Full Text PDFFront Netw Physiol
December 2024
Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
The Constrained Disorder Principle (CDP) defines all systems in nature by their degree of inherent variability. Per the CDP, the intrinsic variability is mandatory for their proper function and is dynamically changed based on pressures. The CDP defines the boundaries of inherent variability as a mechanism for continuous adaptation to internal and external perturbations, enabling survival and function under dynamic conditions.
View Article and Find Full Text PDFInt J Psychophysiol
December 2024
Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
The N1 auditory evoked potential amplitude depends heavily on the inter-stimulus interval (ISI). Typically, shorter ISIs result in reduced N1 amplitudes, suggesting a decreased neural response with high stimulus presentation rates. However, an exception known as N1 facilitation occurs with very brief ISIs (∼150-500 ms), where the N1 amplitude increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!