The facile development of a sustainable and durable flame-retardant approach for protein silk is of interest. Inspired by silk tin-weighting technology, this study developed a novel and sustainable in-situ deposition strategy based on biomass phytic acid to impart durable flame-retardant performance to silk fabrics. The chemical structure of insoluble chelating precipitation, and the surface morphology, thermal stability, combustion behavior, flame-retardant capacity, laundering resistance, and flame-retardant mode of action of the tin-weighting silk samples, were explored. The Sn-, P-, Si-containing insoluble chelating precipitation formed within the fiber interior and combined with silk fibers through electrostatic attraction and metal salt chelation. As a result, the tin-weighting silk displayed excellent self-extinguishing capacity, with the damaged length reduced to 9.2 cm and the LOI increased to 31.6 %; it also achieved self-extinguishing after 30 washing cycles, demonstrating high flame-retardant efficacy and laundering resistance. Moreover, the tin-weighting silk also showed the obvious suppression in smoke and heat generation by 55.6 % and 35.7 %, respectively. The synergistic charring action of phosphate groups, tin metal salts, and silicates was beneficial for enhancing the fire safety of silk. The tin-weighting treatment also displayed a minor impact on mechanical performance of silk fabrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135516 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
This study introduces a sustainable approach for enhancing the fire retardancy and smoke suppression of poly(lactic acid) (PLA) composites, contributing to addressing one of the major challenges in biocomposites that limits their application in various engineering fields, as automotive and construction sectors. Flax fibers (FF) were surface functionalized with a novel organic-inorganic hybrid flame retardant (FR), offering a sustainable bioinspired approach that mitigates potential mechanical properties impairment and FR leaching, which can cause environmental concerns and reduced composite durability. The process involves a three-step coating procedure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
The development of cellulose fabrics with good flame retardancy and durability has been a primary concern for in firefighting clothing. A recyclable ternary deep eutectic solvent (TDES) was used to prepare surface ammonium phosphate-modified cellulose fabrics (SACF). The incorporation of ammonium phosphate groups notably enhanced the durable flame retardancy of cellulose fabrics.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
Biogenic-based foam, renowned for its sustainable and eco-friendly properties, is emerging as a promising thermal insulating material with the potential to significantly enhance energy efficiency and sustainability in building applications. However, its relatively high thermal conductivity, large-pore configurations, and energy-intensive manufacturing processes hinder its widespread use. Here, we report on the scalable, one-pot synthesis of biogenic foams achieved by integrating recycled paper pulp and in situ nanoporous silica formation, resulting in a hierarchical structure comprising both micropores and nanopores.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
The durability and flame retardancy of cotton fabrics have been the focus of long-term research. In this paper, a method for preparing flame retardants through the direct modification of biomass was proposed, and the durable flame retardant of homologous cottonseed meal modified biomass flame retardants for cotton fabrics was achieved through biomass composition analysis and modeling. In this study, a cottonseed meal-phosphoric acid-boric acid synergistic bio-based flame retardant (CPB) was synthesized and characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!