Objective: Digital behavior change interventions (DBCIs) are feasibly effective tools for addressing physical activity. However, in-depth understanding of participants' long-term engagement with DBCIs remains sparse. Since the effectiveness of DBCIs to impact behavior change depends, in part, upon participant engagement, there is a need to better understand engagement as a dynamic process in response to an individual's ever-changing biological, psychological, social, and environmental context.
Methods: The year-long micro-randomized trial (MRT) HeartSteps II provides an unprecedented opportunity to investigate DBCI engagement among ethnically diverse participants. We combined data streams from wearable sensors (Fitbit Versa, i.e., walking behavior), the HeartSteps II app (i.e. page views), and ecological momentary assessments (EMAs, i.e. perceived intrinsic and extrinsic motivation) to build the idiographic models. A system identification approach and a fluid analogy model were used to conduct autoregressive with exogenous input (ARX) analyses that tested hypothesized relationships between these variables inspired by Self-Determination Theory (SDT) with DBCI engagement through time.
Results: Data from 11 HeartSteps II participants was used to test aspects of the hypothesized SDT dynamic model. The average age was 46.33 (SD=7.4) years, and the average steps per day at baseline was 5,507 steps (SD=6,239). The hypothesized 5-input SDT-inspired ARX model for app engagement resulted in a 31.75 % weighted RMSEA (31.50 % on validation and 31.91 % on estimation), indicating that the model predicted app page views almost 32 % better relative to the mean of the data. Among Hispanic/Latino participants, the average overall model fit across inventories of the SDT fluid analogy was 34.22 % (SD=10.53) compared to 22.39 % (SD=6.36) among non-Hispanic/Latino Whites, a difference of 11.83 %. Across individuals, the number of daily notification prompts received by the participant was positively associated with increased app page views. The weekend/weekday indicator and perceived daily busyness were also found to be key predictors of the number of daily application page views.
Conclusions: This novel approach has significant implications for both personalized and adaptive DBCIs by identifying factors that foster or undermine engagement in an individual's respective context. Once identified, these factors can be tailored to promote engagement and support sustained behavior change over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2024.104721 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!