Understanding the spatial patterns of atmospheric ammonia trends in South Asia.

Sci Total Environ

School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China.

Published: December 2024

Ammonia (NH) is the most abundant alkaline gas in the atmosphere, mainly emitted by agricultural activities. NH readily reacts with other atmospheric acidic pollutants, such as the oxidation products of sulfur dioxide (SO) and nitrogen oxides (NOₓ), to create fine particulate matter, which has far-reaching effects on human health and ecosystems. Here, we investigated long-term atmospheric NH trends in South Asia (SA) using satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI). We analyzed 15 years (2008-2022) of IASI-NH retrievals against climate, biophysical, and chemical variables using an ensemble of multivariate statistical methods to identify the major factors driving the observed patterns in the region. Trend analysis of IASI-NH data reveals a significant rise in atmospheric NH over 51 % of SA plains, but a downward trend over 31 % of the region. Spatial correlation analysis reveals that biophysical factors, representing cropland expansion and agriculture intensification, have the highest positive correlation over 56 % of SA plains experiencing positive NH trends. However, our results reveal that the chemical conversion of NH to ammonium compounds, driven by the positive trends in NOₓ and SO pollution, is driving the apparently declining trend of NH in the other regions. Our results provide important insights into the NH trends detected by satellite data and can better inform the policy design aimed at reducing NH emissions and improving air quality for developing regions of the world.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176188DOI Listing

Publication Analysis

Top Keywords

trends south
8
south asia
8
positive trends
8
atmospheric
5
trends
5
understanding spatial
4
spatial patterns
4
patterns atmospheric
4
atmospheric ammonia
4
ammonia trends
4

Similar Publications

Stimulant-involved overdose deaths: Constructing dynamic hypotheses.

Int J Drug Policy

January 2025

MGH Institute for Technology Assessment, Harvard Medical School, Boston, MA, 02144, USA. Electronic address:

The overdose epidemic in the United States is evolving, with a rise in stimulant (cocaine and/or methamphetamine)-only and opioid and stimulant-involved overdose deaths for reasons that remain unclear. We conducted interviews and group model building workshops in Massachusetts and South Dakota. Building on these data and extant research, we identified six dynamic hypotheses, explaining changes in stimulant-involved overdose trends, visualized using causal loop diagrams.

View Article and Find Full Text PDF

Introduction: The global prevalence of antimicrobial resistance transcends geographical and economic boundaries, affecting populations worldwide. Excessive and incorrect use of antibiotics encourages antimicrobial resistance which leads to complex treatment strategies for infectious diseases and possible failure of treatment. The incorrect and unnecessary prescribing of antibiotics places a burden on healthcare costs and thus, antimicrobial resistance is evident globally as a major public health concern.

View Article and Find Full Text PDF

Background: Understanding based on up-to-date data on the burden of non-communicable diseases (NCDs) is limited, especially regarding how subtypes contribute to the overall NCD burden and the attributable risk factors across locations and subtypes. We aimed to report the global, regional, and national burden of NCDs, subtypes, and attributable risk factors in 2021, and trends from 1990 to 2021 by age, sex, and socio-demographic index (SDI).

Materials And Methods: We used data from the Global Burden of Disease Study 2021 to estimate the prevalence, deaths, and disability-adjusted life years (DALYs) for NCDs and subtypes, along with attributable risk factors.

View Article and Find Full Text PDF

The lesser spiny eel, Macrognathus aculeatus (Bloch, 1786), holds substantial economic importance as a food fish in South Asia, due to its exceptional nutritional value. This study was conducted to investigate the reproductive ecology of M. aculeatus within the Gajner beel wetland ecosystem in northwestern Bangladesh, with a specific focus on size at sexual maturity, spawning season, and fecundity in relation to eco-climatic variables.

View Article and Find Full Text PDF

Nature and stability of the chemical bond in H3C-XHn (XHn = CH3, NH2, OH, F, Cl, Br, I).

J Chem Phys

January 2025

Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands, https://www.theochem.nl.

We have quantum chemically analyzed the trends in bond dissociation enthalpy (BDE) of H3C-XHn single bonds (XHn = CH3, NH2, OH, F, Cl, Br, I) along three different dissociation pathways at ZORA-BLYP-D3(BJ)/TZ2P: (i) homolytic dissociation into H3C∙ + ∙XHn, (ii) heterolytic dissociation into H3C+ + -XHn, and (iii) heterolytic dissociation into H3C- + +XHn. The associated BDEs for the three pathways differ not only quantitatively but, in some cases, also in terms of opposite trends along the C-X series. Based on activation strain analyses and quantitative molecular orbital theory, we explain how these differences are caused by the profoundly different electronic structures of, and thus bonding mechanisms between, the resulting fragments in the three different dissociation pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!