Broad-spectrum antivirals can be extremely important for pandemic preparedness. Targeting host factors dispensable for the host but indispensable for the virus can result in high barrier to resistance and a large range of viruses targeted. PI4KB is a lipid kinase involved in the replication of several RNA viruses, but common inhibitors of this target are mainly active against members of the Picornaviridae family. Herein we describe the optimization of bithiazole PI4KB inhibitors as broad-spectrum antivirals (BSAs) active against different members of the Picornaviridae, Coronaviridae, Flaviviridae and Poxviridae families. Since some of these viruses are transmitted via respiratory route, the efficacy of one of the most promising compounds was evaluated in an airway model. The molecule showed complete viral inhibition and absence of toxicity. These results pave the road for the development of new BSAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2024.106003 | DOI Listing |
Nat Commun
December 2024
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.
View Article and Find Full Text PDFAntiviral Res
December 2024
ENA Respiratory Pty Ltd, Melbourne, Australia. Electronic address:
Viral respiratory infection is associated with significant morbidity and mortality. The diversity of viruses implicated, coupled with their propensity for mutation, ignited an interest in host-directed antiviral therapies effective across a wide range of viral variants. Toll-like receptors (TLRs) are potential targets for the development of broad-spectrum antivirals given their central role in host immune defenses.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:
Influenza A virus (IAV) poses a serious global threat to public health. There is an urgent need to develop new anti-IAV agents due to the limitations of the current antiviral drugs in clinical practice. Herein, based on compound I-13e, we designed and synthesized 23 substituted quinoline derivatives containing piperazine moieties and evaluated their in vitro anti-IAV activity.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.
This report explores the potential of novel 6-aryloxy-2-aminopyrimidine-benzonitrile scaffolds as promising anti-infective agents in the face of the increasing threat of infectious diseases. Starting from 2-amino-4,6-dichloropyrimidine, a series of 24 compounds inspired from the antiviral drugs dapivirine, etravirine, and rilpivirine were designed and synthesized via a two-step reaction sequence in good yields. Biological testing of synthetic analogs revealed potent inhibition against both viral and tuberculosis targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!