3D-printing bauxite residue/fly ash-containing geopolymers as promising metal sorbents for water treatment.

Waste Manag

Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

Published: December 2024

Herein, we demonstrate for the first time the feasibility of employing significant amounts (up to 80 wt%) of unexplored industrial wastes (red mud and biomass fly ash) in the production of highly porous 3D-printed geopolymer lattices envisioned for wastewater treatment applications. This without compromising the mechanical performance of the geopolymers relative to those obtained using commercial precursors. The impact of the fly ash incorporation content in the fresh-state (calorimetric and reological characterization) and hardened-state (porosity and mechanical strength) properties of the produced structures was evaluated. Moreover, the influence of key printing parameters, including nozzle diameter and geometry alignment, on the resulting properties of the lattices was also evaluated. The most promising compositions were then evaluated as lead sorbents under continuous flow. The waste-based 3D-printed lattices showed remarkable adsorption ability reaching >95 % removal efficiency after 2 h. This sustainable strategy is in line with the United Nations sustainable development goals and the transition to a circular economy, reducing the consumption of natural resources and simultaneously contributing to reducing water pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.09.007DOI Listing

Publication Analysis

Top Keywords

fly ash
8
3d-printing bauxite
4
bauxite residue/fly
4
residue/fly ash-containing
4
ash-containing geopolymers
4
geopolymers promising
4
promising metal
4
metal sorbents
4
sorbents water
4
water treatment
4

Similar Publications

The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

In the framework of sustainable development and environmental preservation, this research aims to improve the stability and frost resistance of sulfate saline soil by utilizing industrial solid waste. Geopolymer materials containing fly ash (FA) activated by different NaOH concentrations were studied for study on stabilized soil with saline soil, with NaOH concentrations used ranged from 0.1 to 0.

View Article and Find Full Text PDF

Incidental iron oxide nanoclusters drive confined Fenton-like detoxification of solid wastes towards sustainable resource recovery.

Nat Commun

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.

The unique properties of nanomaterials offer vast opportunities to advance sustainable processes. Incidental nanoparticles (INPs) represent a significant part of nanomaterials, yet their potential for sustainable applications remains largely untapped. Herein, we developed a simple strategy to harness INPs to upgrade the waste-to-resource paradigm, significantly reducing the energy consumption and greenhouse gas emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!