Nitrobenzothiazinones (BTZs) are undergoing late-stage development as a novel class of potent antitubercular drug candidates with two compounds in clinical phases. BTZs inhibit decaprenylphosphoryl-β-d-ribose oxidase 1 (DprE1), a key enzyme in cell wall biosynthesis of mycobacteria. Their mechanism of action involves an in-situ-reduction of the nitro moiety to a reactive nitroso intermediate capable of covalent binding to Cys387 in the catalytic cavity. The electron-deficient nature of the aromatic core is a key driver for the formation of hydride-Meisenheimer complexes (HMC) as main metabolites in vivo. To mimic the electrophilic character of the nitroso moiety, bioisosteric replacement with different electrophilic warheads was attempted to reduce HMC formation without compromising covalent reactivity. Herein, we synthesized and characterized various covalent warheads covering different reaction principles. Covalent inhibition was confirmed for most active antimycobacterial compounds by enzymatic inhibition assays and peptide fragment analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.116849 | DOI Listing |
ACS Med Chem Lett
January 2025
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds (IC = 11.55 μM) and (IC = 3.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China. Electronic address:
Betulinic acid (BA) is a kind of naturally occurring lupane pentacyclic triterpenoid, possessing various biological activities including antiviral, anti-inflammatory and antitumor activity. Covalent inhibitors, characterized by electrophilic warheads that form covalent bonds with specific amino acid residues of target proteins, have garnered enormous attention in anticancer agent discovery over the past decade owing to their exceptional selectivity and efficacy. In this study, BA was structurally modified with electrophilic groups, and 23 derivatives of BA were synthesized.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.).
Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, School of Science, Westlake University 310030 Hangzhou Zhejiang Province China.
Sulfonium is an electrophilic and biocompatible group that is widely applied in synthetic chemistry on small molecules. However, there have been few developments of peptide or protein-based sulfonium tools. We recently reported sulfonium-mediated tryptophan crosslinking and developed NleSme2 (norleucine-dimethylsulfonium) peptides as dimethyllysine mimics that crosslink site-specific methyllysine readers.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. Electronic address:
Tissue transglutaminase (TG2) is a multifunctional protein that can catalyze the cross-linking between proteins, and function as a G-protein. TG2's unregulated behaviour has been associated with fibrosis, celiac disease and cancer metastasis. Recently, small molecule irreversible inhibitors have been designed, bearing an electrophilic warhead that can react with the catalytic cysteine, abolishing TG2's catalytic and G-protein capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!