Background: Alternative splicing (AS) and intron retention (IR) implicated in multiple pathophysiological processes, have rarely been reported in systemic sclerosis (SSc).
Methods: We integrated bulk RNA-seq and 4D label-free mass spectrometry to perform a multi-omics analysis of AS and IR in SSc skin tissue and fibroblasts. RMATS and iREAD were used to identify AS and IR, which were validated by real-time PCR. Spearman correlation and the LASSO method were employed to assess correlations among clinical features, introns, splicing factors (regulators of AS) and proteins.
Findings: AS profiles showed distinct alterations in SSc skin tissue, with the most pronounced changes occurring in IR. AS and IR were associated with total modified Rodnan skin score (mRSS) and local skin score. Upon TGF-β stimulation, fibroblasts exhibited significant alterations in IR profiles, affecting genes related to fibroblast proliferation and collagen fibril organization. A comprehensive integrated analysis of introns, exons, and proteome profiles revealed that IR exerted a negative impact on protein expression, with certain changes being under intronic control. RT-PCR confirmed the presence of intron and exon-derived sequences of CTTN, OGA, MED16 and PHYKPL. Additionally, notable changes were observed in the regulatory network of splicing factors in SSc skin tissues. These factors are also involved in fibrosis pathways and correlated with clinical features.
Conclusion: Totally, abnormal AS, IR profiles and splicing factors were identified in SSc, altered IRs and splicing factors participated in fibrosis-related pathways. IR exerted a negative impact on protein expression in TGF-β-stimulated fibroblasts. Clarification of the IR mechanisms will provide new insights into the pathophysiology of SSc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaut.2024.103306 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
Background: LIN28, a highly conserved RNA-binding protein, regulate a wide variety of post-transcriptional cellular processes. The current study aimed to identify genetic variants of five single nucleotide polymorphisms (SNPs) in the LIN28B gene (rs221634, rs22163, rs314276, rs9404590, and rs12194974) and their association with Breast cancer.
Method: 220 patients and 230 controls were genotyped by the RFLP assay for Lin28B gene variants.
Asian Pac J Cancer Prev
January 2025
Principal Scientific Officer & Molecular Advisor, Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, India.
Chronic lymphocytic leukemia (CLL) is a less common hematological malignancy in Indian people. It accounts for less than 5% of all leukemias. Information on genomic alteration in CLL is limited immunoglobulin heavy-chain variable region (IGHV) mutational status is considered the most reliable prognostic marker.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
The etiology of congenital heart disease (CHD) is complex, comprising both genetic and environmental factors. Despite documented familial occurrences, the genetic etiology remains largely elusive. Trio exome sequencing identified a heterozygous FLT4 splice site variant in two families with respectively tetralogy of Fallot (TOF), and variable CHD comprising both the TOF spectrum and aortic coarctation.
View Article and Find Full Text PDFElucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!