Engineering live biotherapeutic products against fungal pathogens such as has been suggested as a means to tackle the increasing threat of fungal infections and the development of resistance to classical antifungal treatments. One important challenge in the design of live therapeutics is to control their localization inside the human body. The specific binding capability to target organisms or tissues would greatly increase their effectiveness by increasing the local concentration of effector molecules at the site of infection. In this study, we utilized surface display of carbohydrate binding domains to enable the probiotic Nissle 1917 to adhere specifically to the pathogenic yeast . Binding was quantified using a newly developed method based on the automated analysis of microscopic images. In addition to a rationally selected chitin binding domain, a synthetic peptide of identical length but distinct sequence also conferred binding. Efficient binding was specific to fungal hyphae, the invasive form of , while the yeast form, as well as abiotic cellulose and PET particles, was only weakly recognized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669158PMC
http://dx.doi.org/10.1021/acssynbio.4c00466DOI Listing

Publication Analysis

Top Keywords

binding
6
engineering adhesion
4
adhesion probiotic
4
probiotic strain
4
strain nissle
4
fungal
4
nissle fungal
4
fungal pathogen
4
pathogen engineering
4
engineering live
4

Similar Publications

This case describes a patient with pancreatic exocrine insufficiency and persistently elevated serum vitamin B12 concentrations that were not due to supplementation or associated with hepatic or hematological pathology. Laboratory investigations suggested the presence of macro-B12 as the cause of this patient's raised serum vitamin B12. Macro-B12 is often formed when vitamin B12-vitamin binding proteins (transcobalamin and haptocorrin) complex with immunoglobulins.

View Article and Find Full Text PDF

The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.

View Article and Find Full Text PDF

tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker.

Front Biosci (Landmark Ed)

January 2025

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.

Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.

View Article and Find Full Text PDF

The Impact of Selenium on the Physiological Activity of Yeast Cells ATCC 7090 and CCY 20-2-26.

Front Biosci (Landmark Ed)

January 2025

Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.

Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.

Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!