AI Article Synopsis

  • * The study creates a reliable model for predicting the compressive strength of FAGC and optimizes its mixture design to minimize CO2 emissions, utilizing advanced techniques like polynomial regression and ensemble learning.
  • * An optimal FAGC mixture design program demonstrates a 16.7% reduction in CO2 emissions at 50 MPa compressive strength, and compared to PCC, FAGC achieves a 60.3% reduction in emissions, offering engineers practical tools for sustainable concrete design.

Article Abstract

Portland cement concrete (PCC) is a major contributor to human-made CO2 emissions. To address this environmental impact, fly ash geopolymer concrete (FAGC) has emerged as a promising low-carbon alternative. This study establishes a robust compressive strength prediction model for FAGC and develops an optimal mixture design method to achieve target compressive strength with minimal CO2 emissions. To develop robust prediction models, comprehensive factors, including fly ash characteristics, mixture proportions, curing parameters, and specimen types, are considered, a large dataset comprising 1136 observations is created, and polynomial regression, genetic programming, and ensemble learning are employed. The ensemble learning model shows superior accuracy and generalization ability with an RMSE value of 1.81 MPa and an R2 value of 0.93 in the experimental validation set. Then, the study integrates the developed strength model with a life cycle assessment-based CO2 emissions model, formulating an optimal FAGC mixture design program. A case study validates the effectiveness of this program, demonstrating a 16.7% reduction in CO2 emissions for FAGC with a compressive strength of 50 MPa compared to traditional trial-and-error design. Moreover, compared to PCC, the developed FAGC achieves a substantial 60.3% reduction in CO2 emissions. This work provides engineers with tools for compressive strength prediction and low carbon optimization of FAGC, enabling rapid and highly accurate design of concrete with lower CO2 emissions and greater sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392388PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310422PLOS

Publication Analysis

Top Keywords

co2 emissions
24
compressive strength
20
strength prediction
12
fly ash
12
ensemble learning
12
ash geopolymer
8
geopolymer concrete
8
mixture design
8
reduction co2
8
co2
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!