Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Situated within a larger project entitled "Exploring the Need for a Uniquely Different Approach in Northern Ontario: A Study of Socially Accountable Artificial Intelligence," this rapid review provides a broad look into how social accountability as an equity-oriented health policy strategy is guiding artificial intelligence (AI) across the Canadian health care landscape, particularly for marginalized regions and populations. This review synthesizes existing literature to answer the question: How is AI present and impacted by social accountability across the health care landscape in Canada?
Methodology: A multidisciplinary expert panel with experience in diverse health care roles and computer sciences was assembled from multiple institutions in Northern Ontario to guide the study design and research team. A search strategy was developed that broadly reflected the concepts of social accountability, AI and health care in Canada. EMBASE and Medline databases were searched for articles, which were reviewed for inclusion by 2 independent reviewers. Search results, a description of the studies, and a thematic analysis of the included studies were reported as the primary outcome.
Principal Findings: The search strategy yielded 679 articles of which 36 relevant studies were included. There were no studies identified that were guided by a comprehensive, equity-oriented social accountability strategy. Three major themes emerged from the thematic analysis: (1) designing equity into AI; (2) policies and regulations for AI; and (3) the inclusion of community voices in the implementation of AI in health care. Across the 3 main themes, equity, marginalized populations, and the need for community and partner engagement were frequently referenced, which are key concepts of a social accountability strategy.
Conclusion: The findings suggest that unless there is a course correction, AI in the Canadian health care landscape will worsen the digital divide and health inequity. Social accountability as an equity-oriented strategy for AI could catalyze many of the changes required to prevent a worsening of the digital divide caused by the AI revolution in health care in Canada and should raise concerns for other global contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392241 | PMC |
http://dx.doi.org/10.1371/journal.pdig.0000597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!