Glioblastoma is one of the most aggressive and treatment-resistant forms of primary brain cancer, posing significant challenges in effective therapy. This study aimed to enhance the effectiveness of glioblastoma therapy by developing a unique nanomedicine composed of Pluronic F127-complexed PEGylated poly(glutamic acid)-cisplatin (PLG-PEG/PF127-CDDP). PLG-PEG/PF127-CDDP demonstrated an optimal size of 133.97 ± 12.60 nm, facilitating efficient cell uptake by GL261 glioma cells. In vitro studies showed significant cytotoxicity against glioma cells with a half-maximal (50%) inhibitory concentration (IC50) of 12.61 µg mL at 48 h and a 72.53% ± 1.89% reduction in cell invasion. Furthermore, PLG-PEG/PF127-CDDP prolonged the circulation half-life of cisplatin to 9.75 h in vivo, leading to a more than 50% reduction in tumor size on day 16 post-treatment initiation in a murine model of glioma. The treatment significantly elevated lactate levels in GL261 cells, indicating enhanced metabolic disruption. Therefore, PLG-PEG/PF127-CDDP offers a promising approach for glioblastoma therapy due to its effects on improving drug delivery efficiency, therapeutic outcomes, and safety while minimizing systemic side effects. This work underscores the potential of polymer-based nanomedicines in overcoming the challenges of treating brain tumors, paving the way for future clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202400662 | DOI Listing |
NMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFIt is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such human tissues, but the maintenance of other cell types within explanted brain remains largely unknown.
View Article and Find Full Text PDFThe rapid growth, invasiveness, and resistance to treatment of glioblastoma multiforme (GBM) underscore the urgent need for improved diagnostics and therapies. Current surgical practice is limited by challenges with intraoperative imaging, while recurrence monitoring requires expensive magnetic resonance or nuclear imaging scans. Here we introduce 'acoustic tumor paint', an approach to labeling brain tumors for ultrasound imaging, a widely accessible imaging modality.
View Article and Find Full Text PDFClin Med Insights Case Rep
January 2025
Department of Rehabilitation, Nara Prefectural General Medical Center, Nara, Japan.
Background: Spasticity is an upper motor neuron syndrome that exacerbates motor paralysis and is rarely associated with pain. This report elucidates the management of drug-resistant pain attributed to an adolescent brain tumor using botulinum therapy.
Case Presentation: A 15-year-old female patient experienced dizziness, developed muscle weakness in her upper extremities, and was diagnosed with diffuse glioblastoma of the pons.
Front Immunol
January 2025
Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France.
In recent decades, immunometabolism in cancers has emerged as an interesting target for treatment development. Indeed, the tumor microenvironment (TME) unique characteristics such as hypoxia and limitation of nutrients availability lead to a switch in metabolic pathways in both tumor and TME cells in order to support their adaptation and grow. Glioblastoma (GBM), the most frequent and aggressive primary brain tumor in adults, has been extensively studied in multiple aspects regarding its immune population, but research focused on immunometabolism remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!