Streptomyces produces diverse secondary metabolites of biopharmaceutical importance, yet the rate of biosynthesis of these metabolites is often hampered by complex transcriptional regulation. Therefore, a fundamental understanding of transcriptional regulation in Streptomyces is key to fully harness its genetic potential. Here, independent component analysis (ICA) of 454 high-quality gene expression profiles of the model species Streptomyces coelicolor is performed, of which 249 profiles are newly generated for S. coelicolor cultivated on 20 different carbon sources and 64 engineered strains with overexpressed sigma factors. ICA of the transcriptome dataset reveals 117 independently modulated groups of genes (iModulons), which account for 81.6% of the variance in the dataset. The genes in each iModulon are involved in specific cellular responses, which are often transcriptionally controlled by specific regulators. Also, iModulons accurately predict 25 secondary metabolite biosynthetic gene clusters encoded in the genome. This systemic analysis leads to reveal the functions of previously uncharacterized genes, putative regulons for 40 transcriptional regulators, including 30 sigma factors, and regulation of secondary metabolism via phosphate- and iron-dependent mechanisms in S. coelicolor. ICA of large transcriptomic datasets thus enlightens a new and fundamental understanding of transcriptional regulation of secondary metabolite synthesis along with interconnected metabolic processes in Streptomyces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538686PMC
http://dx.doi.org/10.1002/advs.202403912DOI Listing

Publication Analysis

Top Keywords

transcriptional regulation
12
streptomyces coelicolor
8
biosynthetic gene
8
gene clusters
8
fundamental understanding
8
understanding transcriptional
8
sigma factors
8
secondary metabolite
8
regulation secondary
8
streptomyces
5

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!