Multiple electron and proton transfers in nanomaterials pose significant demands and challenges across the various fields such as renewable energy, chemical processes, biological applications, and photophysics. In this context, pH-responsive functional group-enriched carbon dots (C-Dots) emerge as superior proton-coupled electron transfer (PCET) agents owing to the presence of multiple functional groups (-COOH, -NH, and -OH) on the surface and redox-active sites in the core. Here, we elucidate the 2e/2H transfer ability of carboxyl-enriched C-Dots (C-Dot-COOH) and amine-enriched C-Dots (C-Dot-NH) with molecular 2e/2H acceptor (benzoquinone, BQ) as a function of p, facilitated by the formation of new O-H bonds. The ground state and excited state p values of different functional groups on the surface of C-Dots are determined using steady-state absorbance and photoluminescence (PL) spectroscopy. The optical spectroscopy and electrochemical studies are employed to comprehend the influence of the surface and core of C-Dots on the proton and electron transfer processes as a function of pH. The cyclic voltammetry analysis reveals a standard Nernstian shift in per pH unit of 30 mV, indicating that the functionalized C-Dots hold promise as candidates for the 2e/2H transfer process. The calculated bond dissociation free energy (BDFE) of the electroactive O-H/N-H bonds provides a more nuanced and detailed understanding of PCET thermodynamic landscapes. These findings underscore the potential of nanoscale functionalized C-Dots for facilitating multiple PCET reactions in future energy technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02655aDOI Listing

Publication Analysis

Top Keywords

electron transfer
12
proton-coupled electron
8
transfer process
8
carbon dots
8
functional groups
8
2e/2h transfer
8
functionalized c-dots
8
c-dots
7
transfer
5
process functionalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!