Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study reports the isolation and characterization of a Streptomyces sp. from soil, capable of producing bioactive secondary metabolites active against a variety of bacterial human pathogens. We targeted the antimicrobial activity against Escherichia coli ATCC-BAA 2469, a clinically relevant strain of bacteria harbouring resistance genes for carbapenems, extended spectrum beta-lactams, tetracyclines, fluoroquinones, etc. Preliminary screening using the spot inoculation technique identified Streptomyces sp. NP73 as the potent strain among the 74 isolated Actinomycetia strain. 16S rRNA gene and whole genome sequencing (WGS) confirmed its taxonomical identity and helped in the construction of the phylogenetic tree. WGS revealed the predicted pathways and biosynthetic gene clusters responsible for producing various types of antibiotics including the isolated compound. Bioactivity guided fractionation and chemical characterization of the active fraction, carried out using liquid chromatography, gas chromatography-mass spectrometry, infra-red spectroscopy, and nuclear magnetic resonance spectroscopy, led to the tentative identification of the active compound as Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-, a diketopiperazine molecule. This compound exhibited excellent antimicrobial and anti-biofilm properties against E. coli ATCC-BAA 2469 with an MIC value of 15.64 µg ml-1, and the low cytotoxicity of the compound identified in this study provides hope for future drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/lambio/ovae086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!