RNA-based therapeutics have gained wide public interest in recent years. RNA is a versatile molecule that exists in many forms including mRNA, siRNA, miRNA, ribozymes, and other non-coding RNAs and is primarily applied for gene therapy. RNA is also used as a modular building block to construct RNA nanostructures. The programmable nature of RNA nanostructures enables the generation of simple, modulable, and multi-functional RNA-based therapeutics. Although the therapeutic application of RNA may be limited due to its structural instability, advances in RNA nanotechnology have improved the stability of RNA nanostructures for greater application. Various strategies have been developed to enhance the stability of RNA nanostructures enabling their application . In this review, we examine the therapeutic applications of RNA nanostructures. Non-immunogenic RNA nanostructures can be rationally designed with functional RNA molecules to modulate gene expression for gene therapy. On the other hand, nucleic acids can be sensed by cellular receptors to elicit an innate immune response, for which certain DNA and RNA motifs can function as adjuvants. Taking advantage of this adjuvant potential, RNA nanostructures can be used for immunotherapy and be designed for cancer vaccines. Thus, we examine the therapeutic application of immunogenic RNA nanostructures for cancer immunotherapy. RNA nanostructures represent promising platforms to design new nanodrugs, gene therapeutics, immunotherapeutic adjuvants, and cancer vaccines. Ongoing research in the field of RNA nanotechnology will continue to empower the development of RNA nanostructure-based therapeutics with high efficacy and limited toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387945 | PMC |
http://dx.doi.org/10.1039/d4ra03823a | DOI Listing |
Front Immunol
December 2024
Myeloid Therapeutics, Inc., Cambridge, MA, United States.
Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China.
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
Castration-resistant prostate cancer (CRPC) presents significant therapeutic challenges due to its aggressive nature and poor prognosis. Targeting Aurora-A kinase (AURKA) has shown promise in cancer treatment. This study investigates the efficacy of ART-T cell membrane-encapsulated AMS@AD (CM-AMS@AD) nanoparticles (NPs) in a photothermal-chemotherapy-immunotherapy combination for CRPC.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania. Electronic address:
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia.
Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for the biomolecular detection, imaging, and molecular diagnostics of real samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!