Understanding mono- and bi-metallic Au and Ni nanoparticle responses to fast heating.

Nanoscale Adv

Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516 F-42023 Saint-Etienne France

Published: September 2024

Nanoparticle assembly, alloying and fragmentation are fundamental processes with significant implications in various fields such as catalysis, materials science, and nanotechnology. Understanding these processes under fast heating conditions is crucial for tailoring nanoparticle properties and optimizing their applications. For this, we employ molecular dynamics simulations to obtain atomic-level insights into nanoparticle behavior. The performed simulations reveal intricate details of sintering, alloying and fragmentation mechanisms shedding light on the underlying physical phenomena governing these processes. The calculation results help to visualize nanoparticle evolution upon undercritical and supercritical heating elucidating not only the role of temperature, but also of nanoparticle sizes and composition. In particular, it is shown that surface tension and surface energy play important roles not only in nanoparticle melting but also in its fragmentation. When the added energy exceeds a critical threshold, the nanoparticle begins to experience alternating compression and expansion. If the tensile stress surpasses the material's strength limit, fragmentation becomes prominent. For very small particles (with radius smaller than ∼10 nm), this occurs more rapidly, whereas sub-nano-cavitation precedes the final fragmentation in larger particles, which behave more like droplets. Interestingly, this effect depends on composition in the case of AuNi alloy nanoparticles, as expected from the phase diagrams and excess energy. The heating level required to overcome the mixing barrier is also determined and is shown to play an important role in the evolution of AuNi nanoparticles, in addition to their size. Furthermore, our findings provide insights into controlling nanoparticle synthesis for various applications in numerous nanotechnological domains, such as catalysis, sensors, material analysis, as well as deseas diagnostics and treatment. This study bridges the gap between experimental observations and theoretical predictions paving the way for designing advanced nanomaterials with enhanced functionalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382544PMC
http://dx.doi.org/10.1039/d4na00634hDOI Listing

Publication Analysis

Top Keywords

nanoparticle
9
fast heating
8
alloying fragmentation
8
fragmentation
5
understanding mono-
4
mono- bi-metallic
4
bi-metallic nanoparticle
4
nanoparticle responses
4
responses fast
4
heating
4

Similar Publications

Emulsion Polymerization of Styrene to Polystyrene Nanoparticles with Self-Emulsifying Nanodroplets as Nucleus.

Langmuir

January 2025

Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.

View Article and Find Full Text PDF

Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.

View Article and Find Full Text PDF

Tick-borne spotted fever rickettsioses (SFRs) continue to cause severe illness and death in otherwise-healthy individuals due to lack of a timely and reliable diagnostic laboratory test. We recently identified a diagnostic biomarker for SFRs, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Here, we developed a prototype laboratory test that targets RC0497 for diagnosis of SFRs.

View Article and Find Full Text PDF

Background: Fascioliasis represents one of the most significant parasitic and foodborne zoonotic diseases in the world. Resistance to currently deployed human and veterinary flukicides is a growing health problem. Zinc oxide nanoparticles (ZnO-NPs) have developed enormous importance in nanomedicine.

View Article and Find Full Text PDF

Multidimensional Resonance Controlled by Critical Size in Printed Binary Colloidal Crystals for High-Contrast Imaging.

J Am Chem Soc

January 2025

Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Colloidal crystal engineering enables the precise construction of structures with remarkable properties. However, the flexible and synergistic regulation of multiple properties of colloidal crystals remains a significant challenge. Here, we inspire from Brazilian opals to self-assemble polymer nanoparticles in the gaps of a single-layer opal substrate to fabricate large-scale binary colloidal crystals (BCCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!