A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiovascular disease detection from cardiac arrhythmia ECG signals using artificial intelligence models with hyperparameters tuning methodologies. | LitMetric

Cardiovascular disease (CVD) is connected with irregular cardiac electrical activity, which can be seen in ECG alterations. Due to its convenience and non-invasive aspect, the ECG is routinely exploited to identify different arrhythmias and automatic ECG recognition is needed immediately. In this paper, enhancement for the detection of CVDs such as Ventricular Tachycardia (VT), Premature Ventricular Contraction (PVC) and ST Change (ST) arrhythmia using different dimensionality reduction techniques and multiple classifiers are presented. Three-dimensionality reduction methods, such as Local Linear Embedding (LLE), Diffusion Maps (DM), and Laplacian Eigen (LE), are employed. The dimensionally reduced ECG samples are further feature selected with Cuckoo Search (CS) and Harmonic Search Optimization (HSO) algorithms. A publicly available MIT-BIH (Physionet) - VT database, PVC database, ST Change database and NSR database were used in this work. The cardiac vascular disturbances are classified by using seven classifiers such as Gaussian Mixture Model (GMM), Expectation Maximization (EM), Non-linear Regression (NLR), Logistic Regression (LR), Bayesian Linear Discriminant Analysis (BDLC), Detrended Fluctuation Analysis (Detrended FA), and Firefly. For different classes, the average overall accuracy of the classification techniques is 55.65 % when without CS and HSO feature selection, 64.36 % when CS feature selection is used, and 75.39 % when HSO feature selection is used. Also, to improve the performance of classifiers, the hyperparameters of four classifiers (GMM, EM, BDLC and Firefly) are tuned with the Adam and Grid Search Optimization (GSO) approaches. The average accuracy of classification for the CS feature-based classifiers that used GSO and Adam hyperparameter tuning was 79.92 % and 85.78 %, respectively. The average accuracy of classification for the HSO feature-based classifiers that used GSO and Adam hyperparameter tuning was 86.87 % and 93.77 %, respectively. The performance of the classifier is analyzed based on the accuracy parameter for both with and without feature selection methods and with hyperparameter tuning techniques. In the case of ST vs. NSR, a higher accuracy of 98.92 % is achieved for the LLE dimensionality reduction with HSO feature selection for the GMM classifier with Adam's hyperparameter tuning approach. The GMM classifier with the Adam hyperparameter tuning approach with 98.92 % accuracy in detecting ST vs. NSR cardiac disease is outperforming all other classifiers and methodologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388751PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36751DOI Listing

Publication Analysis

Top Keywords

feature selection
20
hyperparameter tuning
20
average accuracy
12
accuracy classification
12
hso feature
12
adam hyperparameter
12
cardiovascular disease
8
dimensionality reduction
8
search optimization
8
feature-based classifiers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!