AI Article Synopsis

  • Nanomaterials (NMs) are gaining popularity due to their unique properties and diverse applications, leading to increased research in efficient synthesis methods in material science.
  • This review focuses on the template-assisted method, an advanced bottom-up approach for synthesizing NMs, with a special emphasis on soft template-based strategies that allow precise control over the morphology and size of materials.
  • The review discusses the liquid/liquid interface-assisted soft template method, its applications, influencing factors, and concludes with challenges and future perspectives for further improving nanomaterial design.

Article Abstract

In recent times, nanomaterials (NMs) have gained significant attention for their unique properties and wide-ranging applications. This increased interest has driven research aimed at developing more efficient synthetic approaches in the fields of material science. Moreover, today's increasing demand for materials underscores the need for innovative technologies that can effectively scale up production to meet these growing needs. Hence, this review is primarily delve deeply into the template-assisted method i.e., an advance bottom-up approach for NMs synthesis. Furthermore, this review emphasizes to explore the advancements in soft template-based synthetic strategies for nanostructured materials as it provides high control on morphology and size. Therefore, this review specifically organized around on providing an in-depth discussion of the liquid/liquid interface-assisted soft template method, applications, and the factors affecting liquid/liquid interface for NMs synthesis. These key points are instrumental in driving advancements, highlighting the ongoing need for further enhancement and refinement of smart technologies. Finally, we conclude the review by describing the challenges and future perspectives of the liquid/liquid-assisted approach for NMs designing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387549PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36810DOI Listing

Publication Analysis

Top Keywords

liquid/liquid interface
8
approach nms
8
nms synthesis
8
review
5
review template-assisted
4
template-assisted approaches
4
approaches assembly
4
assembly nanomaterials
4
nanomaterials liquid/liquid
4
interface times
4

Similar Publications

In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.

View Article and Find Full Text PDF

Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.

View Article and Find Full Text PDF

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process.

View Article and Find Full Text PDF

On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics.

Anal Chem

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.

Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!