Rice is a globally important food crop which is sensitive to the presence of a metalloid, arsenic (As). There is limited research pertaining to identifying relevant As-tolerant rice germplasm in adaptive breeding research initiatives, despite the fact that As contamination in rice has long been known. This study served to identify the growth performance of different rice genotypes under high levels of As. Rice seed germination analysis (germination percentage, GP) was performed to categorize the eight different rice genotypes and growing under varying As levels including As, 25 μM and As, 50 μM. The Zhenong 41 was identified as the highly tolerant genotypes with lowest decrease in GP by 87 %, plant height (PH) by 26 %, and dry weight (DW) by 16 %; while 9311 was observed to be the most sensitive genotype with highest reduction in GP by 44 %, PH by 48 % and DW by 54 % under As stress conditions, compared to control treatment. The higher As stress treatment delivered more adverse growth inhibitory effects than the rice plants cultivated under As. Specifically, the As-sensitive rice genotype 9311 showed significantly higher decrease in foliar chlorophyll contents relative to the other genotypes, especially Zhenong 41 (As-tolerant). During exposure to high As levels, the rice genotype 9311 significantly modulated and augmented the production of MDA and HO by stimulating the activities of POD, SOD, and CAT. This study revealed interesting insights into the responses of rice genotypes to variable As stresses throughout the various growth stages. Overall, the findings of this study could be harnessed to support any ongoing As-tolerant rice breeding agendas for cultivation in As-polluted environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388654 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e36093 | DOI Listing |
BMC Plant Biol
January 2025
Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt.
Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Bellagen Biotechnology Co. Ltd; School of Life Sciences, Shandong Normal University;
The conventional approaches to crop breeding, which rely predominantly on time-consuming and labor-intensive methods such as traditional hybridization and mutation breeding, face challenges in efficiently introducing targeted traits and generating diverse plant populations. Conversely, the emergence of genome editing technologies has ushered in a paradigm shift, enabling the precise and expedited manipulation of plant genomes to intentionally introduce desired characteristics. One of the most widespread editing tools is the CRISPR/Cas system, which has been used by researchers to study important biology-related problems.
View Article and Find Full Text PDFSci Rep
January 2025
Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization (AREEO), Amol, Iran.
Environmental stresses, particularly salinity, pose significant challenges to global crop production, notably impacting the growth and yield of rice. Integrating gene expression and metabolomics data offers valuable insights into the molecular mechanisms driving salt tolerance in plants. This study examined the effects of high salinity on the roots and shoots of rice genotypes with contrasting tolerances: CSR28 (tolerant) and IR28 (sensitive) at the seedling stage.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
Fusarium crown rot (FCR) poses a major threat to wheat production in the Huanghuai wheat region of China. This study aims to enhance understanding of pathogen populations causing FCR, focusing on their pathogenicity, trichothecene genotypes, and fungicide resistance. During the 2022-2023 growing seasons, we collected 1820 fungal isolates from 233 locations in this region.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Department of Biostatistics, University of Washington, Seattle, Washington, USA.
Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!