Research on Classification Method of Medical Ultrasound Image Processing Based on Neural Network.

Comput Intell Neurosci

State Key Laboratory for Manufacturing Systems Engineering, Mechanics Institute, Xi'an Jiaotong University, Xi'an 710049, China.

Published: November 2022

In clinical applications, the classification of ultrasound images needs to be processed as an aid to diagnosis. Based on this, a hybrid model of cascaded deep convolutional neural network consisting of two different CNNs and a new classification method are designed and evaluated for its feasibility and effectiveness in ultrasound image classification. A total of 1000 pathological slides of patients with thyroid nodular lesions kept in the Department of Pathology of the First Affiliated Hospital of Lanzhou University, China, were retrospectively collected. After image acquisition, the images were randomly divided into training set, validation set, and test set in the ratio of 4 : 3 : 3. Three convolutional neural network models (VGG 19 model, Inception V3 model, and DenseNet 161 model) with pretraining parameters acquired on the training set were trained, and the models were combined to construct an integrated learning model, and the performance of the models in recognizing pathological images was evaluated based on the test set data. The experimental results show that the VGG 19 model is less effective in classification, with a correct rate of 88.20%, which is lower than that of Inception V3 and DenseNet161 models (92.87% and 92.95%). InceptionV3 and DenseNet161 models have significant advantages in terms of accuracy, number of parameters, and training efficiency, where the DenseNet161 model has faster convergence and better generalization performance, but occupies more video memory in the operation; moreover, the DenseNet161 operation time (1986.48 s) and response time (16 s) are better than the other two models. In addition, the integrated learning of InceptionV3 and DenseNet161 can improve the recognition of pathological images by a single model. Compared with other methods, the performance of the cascaded CNNs proposed in this study is significantly improved, and the multiview strategy can improve the performance of cascaded CNNs. The experimental results demonstrate the potential clinical application of cascaded CNNs, which can provide physicians with an objective second opinion and reduce their heavy workload, in addition to making the diagnosis of thyroid nodules easy and reproducible for people without medical expertise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390190PMC
http://dx.doi.org/10.1155/2022/8912566DOI Listing

Publication Analysis

Top Keywords

neural network
12
cascaded cnns
12
classification method
8
ultrasound image
8
model
8
convolutional neural
8
training set
8
test set
8
vgg model
8
integrated learning
8

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.

View Article and Find Full Text PDF

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

Cardiac MR image reconstruction using cascaded hybrid dual domain deep learning framework.

PLoS One

January 2025

Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.

Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!