AI Article Synopsis

  • Regulating electron transfer in fermentation-based microbiomes has significant advantages for various fields, particularly in enhancing lactic acid production from food waste and wastewater.
  • Introducing electrochemical control with anodic potential can effectively streamline fermentation processes; however, prolonged exposure to certain microbial communities can diminish this effect.
  • The study emphasizes that understanding interactions between different microbial species and the application of electrodes is essential for optimizing sustainable biological processes and engineering tailored microbial consortia.

Article Abstract

Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities () to pure culture reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched and spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387266PMC
http://dx.doi.org/10.1016/j.ese.2024.100459DOI Listing

Publication Analysis

Top Keywords

lactic acid
12
electron transfer
8
fermentative microbiomes
8
convergence lactic
4
microbiomes
4
acid microbiomes
4
microbiomes metabolites
4
metabolites long-term
4
long-term electrofermentation
4
electrofermentation regulating
4

Similar Publications

Given the widespread industrial and domestic use of probiotic blends based on combinations of lactic acid bacteria (LAB) and yeasts to produce fermented foods or beverages that are supposed to provide health benefits, this study aimed to generate knowledge and concepts on biologically relevant activities, metabolism and metabolic interactions in yeast/LAB communities. For this, the postbiotic capabilities of three probiotic candidates, including two lactic acid bacteria (i.e.

View Article and Find Full Text PDF

Integration of untargeted lipidomics and targeted metabolomics revealed the mechanism of flavor formation in lightly cured sea bass driven via salt.

Food Chem

December 2024

School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Salt enhances flavor and salinity in Chinese curing; however, excessive use can pose health risks, while reducing NaCl may harm taste. This study utilized targeted and untargeted metabolomics to investigate the intrinsic molecular mechanisms that drive flavor formation in cured sea bass subjected to salt. Glycine, succinic acid, lactic acid and uridine significantly contributed to the taste profile of the cured sea bass.

View Article and Find Full Text PDF

Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

A preliminary exploration of establishing a mice model of hypoxic training.

Sci Rep

January 2025

Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.

Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!