Objective: The objective of the study was to assess the shear bond strength of bulk-fill flowable composite resin smart dentin replacement plus when bonded to mineral trioxide aggregate (MTA)-angelus, biodentine, and calcium-enriched mixture (CEM) at two different aging periods (15 min and 72 h) using three distinct adhesive systems. In addition, the study identified the specific modes of failure (adhesive, cohesive, or mixed) using a stereomicroscope and scanning electron microscope.

Materials And Methods: One hundred and twenty-six cylindrical acrylic blocks used in the study were sorted into three groups based on the bioactive substance used to fill the 3-mm diameter and 3-mm high hole in the center of each block. The groups were MTA, Biodentine, and CEM. The specimens were then divided into subgroups based on the aging interval (15 min and 72 h) of the bioactive material and the adhesive system used (two-step total-etch, two-step self-etch [SE], and one-step SE) while bonding to the restorative bulk-fill flowable composite. The shear bond strength values were measured with a universal testing machine, and the data were analyzed using two-way and one-way analysis of variance, followed by a test. The specimens were assessed under stereomicroscope and scanning electron microscope to characterize the mode of bond failure (cohesive, adhesive, or mixed).

Results: The study showed that the type of adhesive system and the time of bonding affected the shear bond strength of bulk-fill composite to the pulp capping agents ( < 0.05). For MTA, the highest bond strength was observed with two-step SE group at 15 min (18.16 ± 2.97 MPa) ( < 0.05). CEM exhibited the highest bond strength with two-step SE group at 72 h intervals (8.77 ± 1.76) ( < 0.05). The highest bond strength for biodentine group was observed with total-etch group (8.54 ± 1.35 Mpa) and two-step SE (8.19 ± 1.94 Mpa) bonded at 72 h interval ( < 0.05). The majority of the samples in the MTA group (29/42) and CEM group (20/42) showed a cohesive fracture, whereas Biodentine group (22/42) had an adhesive fracture in most of its samples.

Conclusion: MTA demonstrated the highest bond strength with two-step SE group at 15 min, and CEM exhibited the highest bond strength with two-step SE groups at 72 h interval. For biodentine group, the type of adhesive used did not impact the bond strength values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385902PMC
http://dx.doi.org/10.4103/JCDE.JCDE_192_24DOI Listing

Publication Analysis

Top Keywords

bond strength
40
highest bond
20
shear bond
16
bulk-fill flowable
12
flowable composite
12
two-step group
12
strength two-step
12
biodentine group
12
bond
11
strength
10

Similar Publications

Shear bond strength and ARI scores of metal brackets to glazed glass ceramics and zirconia: an in vitro study investigating surface treatment protocols.

BMC Oral Health

December 2024

Faculty of Dentistry, Innovative Dental Materials and Interfaces Research Unit (URB2i), UR 4462, Paris Cité University, 1 rue Maurice Arnoux, Montrouge, 92120, France.

Objective: To evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) scores of metal brackets to glazed lithium disilicate reinforced glass-ceramics and zirconia according to various surface treatment protocols.

Methods: A total of 240 lithium disilicate ceramic (LD) and 240 zirconia (Zr) blocks were randomly divided according to sandblasting, hydrofluoric acid (HF) etching, universal primer use, and the adhesive system applied. A maxillary canine metal bracket was bonded to each sample with resin cement (Transbond XT, TXT).

View Article and Find Full Text PDF

This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.

View Article and Find Full Text PDF

Bond strength between repair and restorative materials is crucial for endodontic success. This study assessed the effects of the following final irrigation solutions on the bond strength of mineral trioxide aggregate (MTA) to a bulk-fill composite: (1) 17% Ethylenediamine tetraacetic acid (EDTA); (2) 2% Chlorhexidine (CHX); (3) 0.2% chitosan; (4) 0.

View Article and Find Full Text PDF

The aim of the study is to assess the impact of mechanical surface treatments on the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensional (3D) printed and milled CAD/CAM provisional materials. Sixty cylindrical samples were fabricated for each provisional material. Samples were treated with one of the following surface treatments: aluminum oxide airborne particle abrasion, diamond bur rotary instrument roughening, and phosphoric acid etching (control).

View Article and Find Full Text PDF

Adhesion within endodontic obturation material and root canal walls improves the efficacy of the endodontic treatment by establishing a barrier that inhibits reinfection and entombs residual bacteria. This study evaluates the push-out bond strength (POBS) of calcium silicate sealers compared to an epoxy-resin-based sealer. A total of 36 extracted mono-radicular teeth were prepared with Pro Taper Ultimate and irrigated with 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!